Suppr超能文献

一种用于打击安全行业复杂威胁的混合智能框架。

A Hybrid Intelligent Framework to Combat Sophisticated Threats in Secure Industries.

机构信息

Software College, Northeastern University, Shenyang 110169, China.

Riphah Institute of Science and Engineering, Islamabad 44000, Pakistan.

出版信息

Sensors (Basel). 2022 Feb 17;22(4):1582. doi: 10.3390/s22041582.

Abstract

With the new advancements in Internet of Things (IoT) and its applications in different sectors, such as the industrial sector, by connecting billions of devices and instruments, IoT has evolved as a new paradigm known as the Industrial Internet of Things (IIoT). Nonetheless, its benefits and applications have been approved in different areas, but there are possibilities for various cyberattacks because of its extensive connectivity and diverse nature. Such attacks result in financial loss and data breaches, which urge a consequential need to secure IIoT infrastructure. To combat the threats in the IIoT environment, we proposed a deep-learning SDN-enabled intelligent framework. A hybrid classifier is used for threat detection purposes, i.e., Cu-LSTMGRU + Cu-BLSTM. The proposed model achieved a better detection accuracy with low false-positive rate. We have conducted 10-fold cross-validation to show the unbiasdness of the results. The proposed scheme results are compared with Cu-DNNLSTM and Cu-DNNGRU classifiers, which were tested and trained on the same dataset. We have further compared the proposed model with other existing standard classifiers for a thorough performance evaluation. Results achieved by our proposed scheme are impressive with respect to speed efficiency, F1 score, accuracy, precision, and other evaluation metrics.

摘要

随着物联网 (IoT) 的新进展及其在不同领域(如工业领域)的应用,通过连接数十亿台设备和仪器,物联网已经发展成为一种新的范式,称为工业物联网 (IIoT)。尽管如此,其在不同领域的好处和应用已经得到了认可,但由于其广泛的连接性和多样性,也存在各种网络攻击的可能性。此类攻击会导致财务损失和数据泄露,这迫切需要保护 IIoT 基础设施。为了应对 IIoT 环境中的威胁,我们提出了一个基于深度学习 SDN 的智能框架。混合分类器用于威胁检测,即 Cu-LSTMGRU + Cu-BLSTM。所提出的模型在具有低误报率的情况下实现了更好的检测准确性。我们进行了 10 倍交叉验证以显示结果的无偏性。所提出的方案结果与 Cu-DNNLSTM 和 Cu-DNNGRU 分类器进行了比较,这些分类器在相同的数据集上进行了测试和训练。我们还将所提出的模型与其他现有的标准分类器进行了比较,以进行全面的性能评估。所提出的方案在速度效率、F1 分数、准确性、精度和其他评估指标方面的结果令人印象深刻。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ed/8875738/9564f6183d92/sensors-22-01582-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验