Rehman Tayyab, Tariq Noshina, Khan Farrukh Aslam, Rehman Shafqat Ur
Department of Information Engineering, Computer Science, and Mathematics, University of L'Aquila, 67100 L'Aquila, Italy.
Department of Artificial Intelligence and Data Science, National University of Computer and Emerging Sciences, Islamabad 44000, Pakistan.
Sensors (Basel). 2024 Dec 24;25(1):10. doi: 10.3390/s25010010.
The Internet of Things (IoT) contains many devices that can compute and communicate, creating large networks. Industrial Internet of Things (IIoT) represents a developed application of IoT, connecting with embedded technologies in production in industrial operational settings to offer sophisticated automation and real-time decisions. Still, IIoT compels significant cybersecurity threats beyond jamming and spoofing, which could ruin the critical infrastructure. Developing a robust Intrusion Detection System (IDS) addresses the challenges and vulnerabilities present in these systems. Traditional IDS methods have achieved high detection accuracy but need improved scalability and privacy issues from large datasets. This paper proposes a Fog-enabled Federated Learning-based Intrusion Detection System (FFL-IDS) utilizing Convolutional Neural Network (CNN) that mitigates these limitations. This framework allows multiple parties in IIoT networks to train deep learning models with data privacy preserved and low-latency detection ensured using fog computing. The proposed FFL-IDS is validated on two datasets, namely the Edge-IIoTset, explicitly tailored to environments with IIoT, and CIC-IDS2017, comprising various network scenarios. On the Edge-IIoTset dataset, it achieved 93.4% accuracy, 91.6% recall, 88% precision, 87% F1 score, and 87% specificity for jamming and spoofing attacks. The system showed better robustness on the CIC-IDS2017 dataset, achieving 95.8% accuracy, 94.9% precision, 94% recall, 93% F1 score, and 93% specificity. These results establish the proposed framework as a scalable, privacy-preserving, high-performance solution for securing IIoT networks against sophisticated cyber threats across diverse environments.
物联网(IoT)包含许多能够进行计算和通信的设备,从而形成大型网络。工业物联网(IIoT)是物联网的一种发达应用,它在工业运营环境中与生产中的嵌入式技术相连接,以提供复杂的自动化和实时决策。然而,工业物联网除了面临干扰和欺骗之外,还面临重大的网络安全威胁,这可能会破坏关键基础设施。开发一个强大的入侵检测系统(IDS)可以应对这些系统中存在的挑战和漏洞。传统的IDS方法已经取得了很高的检测准确率,但在处理来自大型数据集的可扩展性和隐私问题方面仍需改进。本文提出了一种基于雾计算的联邦学习入侵检测系统(FFL-IDS),该系统利用卷积神经网络(CNN)来缓解这些限制。这个框架允许工业物联网网络中的多个参与方在保留数据隐私的情况下训练深度学习模型,并使用雾计算确保低延迟检测。所提出的FFL-IDS在两个数据集上进行了验证,即专门为工业物联网环境量身定制的Edge-IIoTset和包含各种网络场景的CIC-IDS2017。在Edge-IIoTset数据集上,对于干扰和欺骗攻击,它实现了93.4%的准确率、91.6%的召回率、88%的精确率、87%的F1分数和87%的特异性。该系统在CIC-IDS2017数据集上表现出更好的鲁棒性,实现了95.8%的准确率、94.9%的精确率、94%的召回率、93%的F1分数和93%的特异性。这些结果表明,所提出的框架是一种可扩展的、保护隐私的、高性能的解决方案,可用于保护工业物联网网络免受各种环境中复杂网络威胁的侵害。