Suppr超能文献

模型驱动的医疗传感器网络可靠性的能源资源冗余和服务器更新的影响量化——智能医院中的应用。

Model-Driven Impact Quantification of Energy Resource Redundancy and Server Rejuvenation on the Dependability of Medical Sensor Networks in Smart Hospitals.

机构信息

Laboratory of Applied Research to Distributed Systems (PASID), Universidade Federal do Piauí (UFPI), Picos 64607-670, Brazil.

Konkuk Aerospace Design-Airworthiness Research Institute (KADA), Konkuk University, Seoul 05029, Korea.

出版信息

Sensors (Basel). 2022 Feb 18;22(4):1595. doi: 10.3390/s22041595.

Abstract

The spread of the Coronavirus (COVID-19) pandemic across countries all over the world urges governments to revolutionize the traditional medical hospitals/centers to provide sustainable and trustworthy medical services to patients under the pressure of the huge overload on the computing systems of wireless sensor networks (WSNs) for medical monitoring as well as treatment services of medical professionals. Uncertain malfunctions in any part of the medical computing infrastructure, from its power system in a remote area to the local computing systems at a smart hospital, can cause critical failures in medical monitoring services, which could lead to a fatal loss of human life in the worst case. Therefore, early design in the medical computing infrastructure's power and computing systems needs to carefully consider the dependability characteristics, including the reliability and availability of the WSNs in smart hospitals under an uncertain outage of any part of the energy resources or failures of computing servers, especially due to software aging. In that regard, we propose reliability and availability models adopting stochastic Petri net (SPN) to quantify the impact of energy resources and server rejuvenation on the dependability of medical sensor networks. Three different availability models (A, B, and C) are developed in accordance with various operational configurations of a smart hospital's computing infrastructure to assimilate the impact of energy resource redundancy and server rejuvenation techniques for high availability. Moreover, a comprehensive sensitivity analysis is performed to investigate the components that impose the greatest impact on the system availability. The analysis results indicate different impacts of the considered configurations on the WSN's operational availability in smart hospitals, particularly 99.40%, 99.53%, and 99.64% for the configurations A, B, and C, respectively. This result highlights the difference of 21 h of downtime per year when comparing the worst with the best case. This study can help leverage the early design of smart hospitals considering its wireless medical sensor networks' dependability in quality of service to cope with overloading medical services in world-wide virus pandemics.

摘要

冠状病毒(COVID-19)疫情在全球各国的蔓延,促使各国政府对传统的医疗医院/中心进行彻底改革,以便在医疗监测以及医疗专业人员治疗服务的无线传感器网络(WSN)计算系统承受巨大过载压力的情况下,为患者提供可持续和值得信赖的医疗服务。医疗计算基础设施中任何部分的不确定故障,从远程地区的电力系统到智能医院的本地计算系统,都可能导致医疗监测服务的严重故障,在最坏的情况下,这可能导致致命的人员伤亡。因此,医疗计算基础设施的电力和计算系统的早期设计需要仔细考虑可靠性特征,包括在智能医院的 WSN 中,考虑到任何部分能源中断或计算服务器故障(尤其是由于软件老化)的情况下的可靠性和可用性。在这方面,我们提出了采用随机 Petri 网(SPN)的可靠性和可用性模型,以量化能源资源和服务器更新对医疗传感器网络可靠性的影响。根据智能医院计算基础设施的各种操作配置,开发了三种不同的可用性模型(A、B 和 C),以同化能源资源冗余和服务器更新技术对高可用性的影响。此外,还进行了全面的敏感性分析,以研究对系统可用性影响最大的组件。分析结果表明,考虑到配置对智能医院中 WSN 操作可用性的不同影响,特别是配置 A、B 和 C 的操作可用性分别为 99.40%、99.53%和 99.64%。这一结果突出了从最差情况到最好情况的每年停机时间相差 21 小时的差异。这项研究可以帮助利用智能医院的早期设计,考虑其无线医疗传感器网络的可靠性,以应对全球范围内病毒大流行期间医疗服务的过载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caf4/8878356/4db4d5e6e432/sensors-22-01595-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验