Suppr超能文献

人工智能能否助力从植物标本馆馆藏研究植物营养生长模式?法属圭亚那森林热带植物区系评估

Can Artificial Intelligence Help in the Study of Vegetative Growth Patterns from Herbarium Collections? An Evaluation of the Tropical Flora of the French Guiana Forest.

作者信息

Goëau Hervé, Lorieul Titouan, Heuret Patrick, Joly Alexis, Bonnet Pierre

机构信息

Botany and Modeling of Plant Architecture and Vegetation (AMAP), French Agricultural Research Centre for International Development (CIRAD), French National Centre for Scientific Research (CNRS), French National Institute for Agriculture, Food and Environment (INRAE), Research Institute for Development (IRD), University of Montpellier, 34398 Montpellier, France.

ZENITH Team, Laboratory of Informatics, Robotics and Microelectronics-Joint Research Unit, Institut National de Recherche en Informatique et en Automatique (INRIA) Sophia-Antipolis, CEDEX 5, 34095 Montpellier, France.

出版信息

Plants (Basel). 2022 Feb 16;11(4):530. doi: 10.3390/plants11040530.

Abstract

A better knowledge of tree vegetative growth phenology and its relationship to environmental variables is crucial to understanding forest growth dynamics and how climate change may affect it. Less studied than reproductive structures, vegetative growth phenology focuses primarily on the analysis of growing shoots, from buds to leaf fall. In temperate regions, low winter temperatures impose a cessation of vegetative growth shoots and lead to a well-known annual growth cycle pattern for most species. The humid tropics, on the other hand, have less seasonality and contain many more tree species, leading to a diversity of patterns that is still poorly known and understood. The work in this study aims to advance knowledge in this area, focusing specifically on herbarium scans, as herbariums offer the promise of tracking phenology over long periods of time. However, such a study requires a large number of shoots to be able to draw statistically relevant conclusions. We propose to investigate the extent to which the use of deep learning can help detect and type-classify these relatively rare vegetative structures in herbarium collections. Our results demonstrate the relevance of using herbarium data in vegetative phenology research as well as the potential of deep learning approaches for growing shoot detection.

摘要

更好地了解树木营养生长物候及其与环境变量的关系对于理解森林生长动态以及气候变化如何影响森林生长至关重要。与生殖结构相比,营养生长物候的研究较少,它主要侧重于从芽到落叶的生长枝的分析。在温带地区,冬季低温会导致营养生长枝停止生长,并导致大多数物种呈现出众所周知的年度生长周期模式。另一方面,潮湿的热带地区季节性较弱,树种更多,导致了多种仍鲜为人知和了解的模式。本研究的工作旨在推进该领域的知识,特别关注植物标本扫描,因为植物标本有望长期追踪物候。然而,这样的研究需要大量的枝条才能得出具有统计学意义的结论。我们建议研究深度学习在多大程度上有助于检测植物标本馆收藏中这些相对罕见的营养结构并进行类型分类。我们的结果证明了在营养物候研究中使用植物标本数据的相关性以及深度学习方法在检测生长枝方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8a6/8875713/8d64326b8b0d/plants-11-00530-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验