Pearson Katelin D, Nelson Gil, Aronson Myla F J, Bonnet Pierre, Brenskelle Laura, Davis Charles C, Denny Ellen G, Ellwood Elizabeth R, Goëau Hervé, Heberling J Mason, Joly Alexis, Lorieul Titouan, Mazer Susan J, Meineke Emily K, Stucky Brian J, Sweeney Patrick, White Alexander E, Soltis Pamela S
California Polytechnic State University, San Luis Obispo, California.
Florida Museum of Natural History, Gainesville, Florida.
Bioscience. 2020 Jul 1;70(6):610-620. doi: 10.1093/biosci/biaa044. Epub 2020 May 13.
Machine learning (ML) has great potential to drive scientific discovery by harvesting data from images of herbarium specimens-preserved plant material curated in natural history collections-but ML techniques have only recently been applied to this rich resource. ML has particularly strong prospects for the study of plant phenological events such as growth and reproduction. As a major indicator of climate change, driver of ecological processes, and critical determinant of plant fitness, plant phenology is an important frontier for the application of ML techniques for science and society. In the present article, we describe a generalized, modular ML workflow for extracting phenological data from images of herbarium specimens, and we discuss the advantages, limitations, and potential future improvements of this workflow. Strategic research and investment in specimen-based ML methods, along with the aggregation of herbarium specimen data, may give rise to a better understanding of life on Earth.
机器学习(ML)通过从植物标本图像中获取数据,在推动科学发现方面具有巨大潜力,植物标本是保存在自然历史收藏中的植物材料,但机器学习技术直到最近才应用于这一丰富资源。机器学习在研究植物物候事件(如生长和繁殖)方面前景尤为广阔。作为气候变化的主要指标、生态过程的驱动因素以及植物适应性的关键决定因素,植物物候是机器学习技术应用于科学和社会的一个重要前沿领域。在本文中,我们描述了一种从植物标本图像中提取物候数据的通用模块化机器学习工作流程,并讨论了该工作流程的优点、局限性以及未来可能的改进。对基于标本的机器学习方法进行战略研究和投资,以及植物标本数据的汇总,可能会增进我们对地球上生命的理解。