Suppr超能文献

机器学习对植物标本馆标本上的生殖器官计数不足,但能准确推断其物候定量状态:一项关于……的案例研究

Machine Learning Undercounts Reproductive Organs on Herbarium Specimens but Accurately Derives Their Quantitative Phenological Status: A Case Study of .

作者信息

Love Natalie L R, Bonnet Pierre, Goëau Hervé, Joly Alexis, Mazer Susan J

机构信息

Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA.

Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA.

出版信息

Plants (Basel). 2021 Nov 16;10(11):2471. doi: 10.3390/plants10112471.

Abstract

Machine learning (ML) can accelerate the extraction of phenological data from herbarium specimens; however, no studies have assessed whether ML-derived phenological data can be used reliably to evaluate ecological patterns. In this study, 709 herbarium specimens representing a widespread annual herb, were scored both manually by human observers and by a mask R-CNN object detection model to (1) evaluate the concordance between ML and manually-derived phenological data and (2) determine whether ML-derived data can be used to reliably assess phenological patterns. The ML model generally underestimated the number of reproductive structures present on each specimen; however, when these counts were used to provide a quantitative estimate of the phenological stage of plants on a given sheet (i.e., the phenological index or PI), the ML and manually-derived PI's were highly concordant. Moreover, herbarium specimen age had no effect on the estimated PI of a given sheet. Finally, including ML-derived PIs as predictor variables in phenological models produced estimates of the phenological sensitivity of this species to climate, temporal shifts in flowering time, and the rate of phenological progression that are indistinguishable from those produced by models based on data provided by human observers. This study demonstrates that phenological data extracted using machine learning can be used reliably to estimate the phenological stage of herbarium specimens and to detect phenological patterns.

摘要

机器学习(ML)可以加速从植物标本中提取物候数据;然而,尚无研究评估基于机器学习得出的物候数据是否可用于可靠地评估生态模式。在本研究中,对代表一种广泛分布的一年生草本植物的709份植物标本,由人类观察者和一个掩码区域卷积神经网络(mask R-CNN)目标检测模型分别进行评分,以(1)评估机器学习得出的数据与人工获取的物候数据之间的一致性,以及(2)确定基于机器学习得出的数据是否可用于可靠地评估物候模式。机器学习模型通常低估了每个标本上存在的生殖结构数量;然而,当使用这些计数来对给定标本上植物的物候阶段进行定量估计(即物候指数或PI)时,基于机器学习得出的PI与人工获取的PI高度一致。此外,植物标本的年份对给定标本的估计PI没有影响。最后,在物候模型中纳入基于机器学习得出的PI作为预测变量,得出了该物种对气候的物候敏感性、开花时间的时间变化以及物候进程速率的估计值,这些估计值与基于人类观察者提供的数据构建的模型得出的结果没有区别。本研究表明,利用机器学习提取的物候数据可用于可靠地估计植物标本的物候阶段并检测物候模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验