Biton Hayun Stav, Shukla Rajendra P, Ben-Yoav Hadar
Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute of Nanoscale Science and Technology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
Polymers (Basel). 2022 Feb 13;14(4):717. doi: 10.3390/polym14040717.
In situ analysis of multiple biomarkers in the body provides better diagnosis and enables personalized health management. Since many of these biomarkers are redox-active, electrochemical sensors have shown promising analytical capabilities to measure multiple redox-active molecules. However, the analytical performance of electrochemical sensors rapidly decreases in the presence of multicomponent biofluids due to their limited ability to separate overlapping electrochemical signals generated by multiple molecules. Here we report a novel approach to use charged chitosan-modified electrodes to alter the diffusion of ascorbic acid, clozapine, L-homocysteine, and uric acid-test molecules with various molecular charges and molecular weights. Moreover, we present a complementary approach to use chemometrics to decipher the complex set of overlapping signals generated from a mixture of differentially charged redox molecules. The partial least square regression model predicted three out of four redox-active molecules with root mean square error, Pearson correlation coefficient, and R-squared values of 125 µM, 0.947, and 0.894; 51.8 µM, 0.877, and 0.753; 55.7 µM, 0.903, and 0.809, respectively. By further enhancing our understanding of the diffusion of redox-active molecules in chitosan, the in-situ separation of multiple molecules can be enabled, which will be used to establish guidelines for the effective separation of biomarkers.
对体内多种生物标志物进行原位分析可提供更好的诊断,并实现个性化健康管理。由于这些生物标志物中的许多具有氧化还原活性,电化学传感器已显示出测量多种氧化还原活性分子的良好分析能力。然而,由于电化学传感器分离多个分子产生的重叠电化学信号的能力有限,其分析性能在多组分生物流体存在下会迅速下降。在此,我们报告了一种新方法,即使用带电壳聚糖修饰电极来改变抗坏血酸、氯氮平、L-同型半胱氨酸和尿酸(测试分子,具有不同的分子电荷和分子量)的扩散。此外,我们还提出了一种互补方法,即使用化学计量学来解读由不同电荷的氧化还原分子混合物产生的复杂重叠信号集。偏最小二乘回归模型预测了四种氧化还原活性分子中的三种,其均方根误差、皮尔逊相关系数和决定系数分别为125 μM、0.947和0.894;51.8 μM、0.877和0.753;55.7 μM、0.903和0.809。通过进一步加深我们对壳聚糖中氧化还原活性分子扩散的理解,可以实现多种分子的原位分离,这将用于建立生物标志物有效分离的指导原则。