Suppr超能文献

基于 DeepWalk 的方法,通过 lncRNA-miRNA-疾病-蛋白质-药物图预测 lncRNA-miRNA 相互作用。

DeepWalk based method to predict lncRNA-miRNA associations via lncRNA-miRNA-disease-protein-drug graph.

机构信息

Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

BMC Bioinformatics. 2022 Feb 25;22(Suppl 12):621. doi: 10.1186/s12859-022-04579-0.

Abstract

BACKGROUND

Long non-coding RNAs (lncRNAs) play a crucial role in diverse biological processes and have been confirmed to be concerned with various diseases. Largely uncharacterized of the physiological role and functions of lncRNA remains. MicroRNAs (miRNAs), which are usually 20-24 nucleotides, have several critical regulatory parts in cells. LncRNA can be regarded as a sponge to adsorb miRNA and indirectly regulate transcription and translation. Thus, the identification of lncRNA-miRNA associations is essential and valuable.

RESULTS

In our work, we present DWLMI to infer the potential associations between lncRNAs and miRNAs by representing them as vectors via a lncRNA-miRNA-disease-protein-drug graph. Specifically, DeepWalk can be used to learn the behavior representation of vertices. The methods of fingerprint, k-mer and MeSH descriptors were mainly used to learn the attribute representation of vertices. By combining the above two kinds of information, unknown lncRNA-miRNA associations can be predicted by the random forest classifier. Under the five-fold cross-validation, the proposed DWLMI model obtained an average prediction accuracy of 95.22% with a sensitivity of 94.35% at the AUC of 98.56%.

CONCLUSIONS

The experimental results demonstrated that DWLMI can effectively predict the potential lncRNA-miRNA associated pairs, and the results can provide a new insight for related non-coding RNA researchers in the field of combing biology big data with deep learning.

摘要

背景

长非编码 RNA(lncRNAs)在多种生物过程中发挥着关键作用,并且已经证实与各种疾病有关。lncRNA 的生理作用和功能在很大程度上仍未被充分描述。microRNA(miRNAs)通常由 20-24 个核苷酸组成,在细胞中有几个关键的调节部分。lncRNA 可以被视为一种海绵,吸附 miRNA,并间接调节转录和翻译。因此,识别 lncRNA-miRNA 关联是至关重要和有价值的。

结果

在我们的工作中,我们提出了 DWLMI 通过 lncRNA-miRNA-疾病-蛋白质-药物图将它们表示为向量来推断 lncRNA 和 miRNA 之间的潜在关联。具体来说,DeepWalk 可用于学习顶点的行为表示。指纹、k-mer 和 MeSH 描述符的方法主要用于学习顶点的属性表示。通过结合上述两种信息,可以通过随机森林分类器预测未知的 lncRNA-miRNA 关联。在五折交叉验证下,所提出的 DWLMI 模型在 AUC 为 98.56%时,平均预测准确率为 95.22%,灵敏度为 94.35%。

结论

实验结果表明,DWLMI 可以有效地预测潜在的 lncRNA-miRNA 相关对,并且结果可以为生物大数据与深度学习领域的相关非编码 RNA 研究人员提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ad2/8875942/f71f066af8e1/12859_2022_4579_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验