Suppr超能文献

一种使用流式细胞术免疫表型分析的慢性淋巴细胞白血病新型鉴别诊断算法。

A novel differential diagnosis algorithm for chronic lymphocytic leukemia using immunophenotyping with flow cytometry.

作者信息

Ozdemir Zehra Narli, Falay Mesude, Parmaksiz Ayhan, Genc Eylem, Beyler Ozlem, Gunes Ahmet Kursad, Ceran Funda, Dagdas Simten, Ozet Gulsum

机构信息

Ankara City Hospital, Ankara, Turkey.

Duzen Laboratories Group, Ankara, Turkey.

出版信息

Hematol Transfus Cell Ther. 2023 Apr-Jun;45(2):176-181. doi: 10.1016/j.htct.2021.08.012. Epub 2021 Nov 29.

Abstract

INTRODUCTION

The availability of a clinical decision algorithm for diagnosis of chronic lymphocytic leukemia (CLL) may greatly contribute to the diagnosis of CLL, particularly in cases with ambiguous immunophenotypes. Herein we propose a novel differential diagnosis algorithm for the CLL diagnosis using immunophenotyping with flow cytometry.

METHODS

The hierarchical logistic regression model (Backward LR) was used to build a predictive algorithm for the diagnosis of CLL, differentiated from other lymphoproliferative disorders (LPDs).

RESULTS

A total of 302 patients, of whom 220 (72.8%) had CLL and 82 (27.2%), B-cell lymphoproliferative disorders other than CLL, were included in the study. The Backward LR model comprised the variables CD5, CD43, CD81, ROR1, CD23, CD79b, FMC7, sIg and CD200 in the model development process. The weak expression of CD81 and increased intensity of expression in markers CD5, CD23 and CD200 increased the probability of CLL diagnosis, (p < 0.05). The odd ratio for CD5, C23, CD200 and CD81 was 1.088 (1.050 - 1.126), 1.044 (1.012 - 1.077), 1.039 (1.007 - 1.072) and 0.946 (0.921 - 0.970) [95% C.I.], respectively. Our model provided a novel diagnostic algorithm with 95.27% of sensitivity and 91.46% of specificity. The model prediction for 97.3% (214) of 220 patients diagnosed with CLL, was CLL and for 91.5% (75) of 82 patients diagnosed with an LPD other than CLL, was others. The cases were correctly classified as CLL and others with a 95.7% correctness rate.

CONCLUSIONS

Our model highlighting 4 markers (CD81, CD5, CD23 and CD200) provided high sensitivity and specificity in the CLL diagnosis and in distinguishing of CLL among other LPDs.

摘要

引言

慢性淋巴细胞白血病(CLL)临床诊断算法的可用性可能极大地有助于CLL的诊断,特别是在免疫表型不明确的病例中。在此,我们提出一种使用流式细胞术免疫表型分析的新型CLL诊断鉴别算法。

方法

采用分层逻辑回归模型(向后LR)构建用于诊断CLL的预测算法,以区别于其他淋巴增殖性疾病(LPD)。

结果

本研究共纳入302例患者,其中220例(72.8%)患有CLL,82例(27.2%)患有除CLL以外的B细胞淋巴增殖性疾病。在模型开发过程中,向后LR模型包含变量CD5、CD43、CD81、ROR1、CD23、CD79b、FMC7、sIg和CD200。CD81的弱表达以及CD5、CD23和CD200标记物表达强度的增加增加了CLL诊断的可能性(p < 0.05)。CD5、C23、CD200和CD81的比值比分别为1.088(1.050 - 1.126)、1.044(1.012 - 1.077)、1.039(1.007 - 1.072)和0.946(0.921 - 0.970)[95%置信区间]。我们的模型提供了一种新型诊断算法,灵敏度为95.27%,特异性为91.46%。在220例诊断为CLL的患者中,该模型对97.3%(214例)的预测为CLL,在82例诊断为除CLL以外的LPD的患者中,对91.5%(75例)的预测为其他疾病。这些病例被正确分类为CLL和其他疾病,正确率为95.7%。

结论

我们突出4种标记物(CD81、CD5、CD23和CD200)的模型在CLL诊断以及在其他LPD中鉴别CLL方面提供了高灵敏度和特异性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验