Suppr超能文献

阿片类物质使用障碍药物辅助治疗期间渴求的轨迹:亚分型以早期识别更高风险。

Trajectories of craving during medication-assisted treatment for opioid-use disorder: Subtyping for early identification of higher risk.

机构信息

Intramural Research Program, National Institute on Drug Abuse, USA.

Intramural Research Program, National Institute on Drug Abuse, USA.

出版信息

Drug Alcohol Depend. 2022 Apr 1;233:109362. doi: 10.1016/j.drugalcdep.2022.109362. Epub 2022 Feb 18.

Abstract

AIMS

To examine evidence for subtypes of opioid craving trajectories during medication for opioid use disorder (MOUD), and to (a) test whether these subtypes differed on MOUD-related outcomes, and (b) determine whether nonresponders could be identified before treatment initiation.

DESIGN, SETTING, AND PARTICIPANTS: Outpatients (n = 211) being treated with buprenorphine or methadone for up to 16 weeks. Growth mixture modeling was used to identify unobserved craving-trajectory subtypes. Support Vector Machines (SVM) were trained to predict subtype membership from pretreatment data.

MEASUREMENTS

Self-reported opioid craving (Ecological Momentary Assessment - EMA - three random moments per day). Participant-initiated EMA reports of drug use or higher-than-usual stress. Addiction Severity Index (ASI) pretreatment.

FINDINGS

Four craving trajectories were identified: Low (73%); High and Increasing (HIC) (10.9%); Increasing and Decreasing (8.5%); and Rapidly Declining (7.6%). The HIC subgroup reported the highest use of heroin, any opiate, and cannabis during treatment. The Low Craving subgroup reported the lowest use of heroin or any opiate use, and the lowest levels of stress and drug-cue exposure during treatment. SVM models predicting HIC membership before treatment initiation had a sensitivity of 0.70, specificity of 0.78, and accuracy of 0.77. Including 3 weeks of EMA reports increased sensitivity to 0.78, specificity to 0.84, and accuracy to 0.85.

CONCLUSIONS

Subgroups of MOUD patients show distinct patterns of opioid craving during treatment. Subgroups differ on critical outcomes including drug-use lapse, stress, and exposure to drug cues. Data from enrollment and early in treatment may help focus clinical attention.

摘要

目的

研究在治疗阿片类药物使用障碍(MOUD)期间阿片类药物渴求轨迹的亚型证据,并(a)检验这些亚型是否在 MOUD 相关结果上存在差异,以及(b)确定是否可以在治疗开始前识别出无反应者。

设计、地点和参与者:门诊患者(n=211)接受丁丙诺啡或美沙酮治疗,最长可达 16 周。采用增长混合物模型识别未观察到的渴求轨迹亚型。支持向量机(SVM)用于从治疗前数据中预测亚型归属。

测量

自我报告的阿片类药物渴求(生态瞬间评估-EMA-每天随机三个时刻)。参与者发起的药物使用或高于正常水平的应激的 EMA 报告。治疗前的成瘾严重程度指数(ASI)。

结果

确定了四种渴求轨迹:低(73%);高且增加(HIC)(10.9%);增加和减少(8.5%);快速下降(7.6%)。HIC 亚组在治疗期间报告了最高的海洛因、任何阿片类药物和大麻使用量。低渴求亚组在治疗期间报告了最低的海洛因或任何阿片类药物使用量,以及最低的应激和药物线索暴露水平。在治疗前预测 HIC 成员资格的 SVM 模型的敏感性为 0.70,特异性为 0.78,准确性为 0.77。纳入 3 周的 EMA 报告将敏感性提高到 0.78,特异性提高到 0.84,准确性提高到 0.85。

结论

MOUD 患者的亚组在治疗期间表现出不同的阿片类药物渴求模式。亚组在关键结果上存在差异,包括药物使用失误、应激和药物线索暴露。入组和早期治疗时的数据可能有助于集中临床注意力。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验