机器学习模型在酒精使用障碍中进行时间精确的戒断预测。
Machine learning models for temporally precise lapse prediction in alcohol use disorder.
机构信息
Department of Psychology, University of Wisconsin-Madison.
出版信息
J Psychopathol Clin Sci. 2024 Oct;133(7):527-540. doi: 10.1037/abn0000901. Epub 2024 Aug 22.
We developed three machine learning models that predict hour-by-hour probabilities of a future lapse back to alcohol use with increasing temporal precision (i.e., lapses in the next week, next day, and next hour). Model features were based on raw scores and longitudinal change in theoretically implicated risk factors collected through ecological momentary assessment. Participants ( = 151, 51% male, = 41, 87% White, 97% non-Hispanic) in early recovery (1-8 weeks of abstinence) from alcohol use disorder provided 4 × daily ecological momentary assessment for up to 3 months. We used grouped, nested cross-validation to select the best models and evaluate the performance of those best models. Models yielded median areas under the receiver operating curves of 0.89, 0.90, and 0.93 in the 30 held-out test sets for week-, day-, and hour-level models, respectively. Some feature categories consistently emerged as being globally important to lapse prediction across our week-, day-, and hour-level models (i.e., past use, future self-efficacy). However, most of the more punctate, time-varying constructs (e.g., craving, past stressful events, arousal) appear to have a greater impact within the next-hour prediction model. This research represents an important step toward the development of a smart (machine learning guided) sensing system that can both identify periods of peak lapse risk and recommend specific supports to address factors contributing to this risk. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
我们开发了三个机器学习模型,这些模型可以预测未来某一时刻重新饮酒的可能性,并且具有越来越高的时间精度(即未来一周、未来一天和未来一小时内的复发)。模型特征基于通过生态瞬时评估收集的原始分数和理论上涉及的风险因素的纵向变化。处于酒精使用障碍早期恢复期(戒断后 1-8 周)的参与者(n = 151,51%为男性,41%为白人,97%为非西班牙裔)每天提供 4 次生态瞬时评估,最长可达 3 个月。我们使用分组嵌套交叉验证来选择最佳模型,并评估这些最佳模型的性能。在 30 个预留测试集中,周、日和小时水平模型的接收器操作曲线下中位数面积分别为 0.89、0.90 和 0.93。一些特征类别在我们的周、日和小时水平模型中始终被认为对复发预测具有全球重要性(即过去使用、未来自我效能)。然而,大多数更具时间变化的构造(例如,渴望、过去的压力事件、觉醒)似乎在未来一小时的预测模型中具有更大的影响。这项研究是朝着开发智能(机器学习指导)感应系统迈出的重要一步,该系统既可以识别复发风险最高的时期,又可以推荐解决导致这种风险的因素的具体支持措施。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。