Perron Quentin, Mirguet Olivier, Tajmouati Hamza, Skiredj Adam, Rojas Anne, Gohier Arnaud, Ducrot Pierre, Bourguignon Marie-Pierre, Sansilvestri-Morel Patricia, Do Huu Nicolas, Gellibert Françoise, Gaston-Mathé Yann
Iktos, Paris, France.
Institut De Recherches Servier, Suresnes, France.
J Comput Chem. 2022 Apr 15;43(10):692-703. doi: 10.1002/jcc.26826. Epub 2022 Feb 26.
Multi-parameter optimization (MPO) is a major challenge in new chemical entity (NCE) drug discovery. Recently, promising results were reported for deep learning generative models applied to de novo molecular design, but, to our knowledge, until now no report was made of the value of this new technology for addressing MPO in an actual drug discovery project. In this study, we demonstrate the benefit of applying AI technology in a real drug discovery project. We evaluate the potential of a ligand-based de novo design technology using deep learning generative models to accelerate the obtention of lead compounds meeting 11 different biological activity objectives simultaneously. Using the initial dataset of the project, we built QSAR models for all the 11 objectives, with moderate to high performance (precision between 0.67 and 1.0 on an independent test set). Our DL-based AI de novo design algorithm, combined with the QSAR models, generated 150 virtual compounds predicted as active on all objectives. Eleven were synthetized and tested. The AI-designed compounds met 9.5 objectives on average (i.e., 86% success rate) versus 6.4 (i.e., 58% success rate) for the initial molecules measured on all objectives. One of the AI-designed molecules was active on all 11 measured objectives, and two were active on 10 objectives while being in the error margin of the assay for the last one. The AI algorithm designed compounds with functional groups, which, although being rare or absent in the initial dataset, turned out to be highly beneficial for the MPO.
多参数优化(MPO)是新化学实体(NCE)药物发现中的一项重大挑战。最近,有报道称深度学习生成模型应用于从头分子设计取得了令人鼓舞的成果,但据我们所知,到目前为止,尚未有关于这项新技术在实际药物发现项目中解决MPO价值的报道。在本研究中,我们展示了在实际药物发现项目中应用人工智能技术的益处。我们评估了使用深度学习生成模型的基于配体的从头设计技术加速同时获得满足11个不同生物活性目标的先导化合物的潜力。利用该项目的初始数据集,我们针对所有11个目标建立了QSAR模型,性能从中等到较高(在独立测试集上的精度在0.67至1.0之间)。我们基于深度学习的人工智能从头设计算法与QSAR模型相结合,生成了150种预测对所有目标均有活性的虚拟化合物。合成并测试了其中11种。人工智能设计的化合物平均满足9.5个目标(即成功率为86%),而初始分子在所有目标上测量的平均满足6.4个目标(即成功率为58%)。人工智能设计的分子中有一个对所有11个测量目标均有活性,有两个对10个目标有活性,而最后一个目标在测定误差范围内。人工智能算法设计的化合物具有一些官能团,这些官能团虽然在初始数据集中很少见或不存在,但对多参数优化非常有益。