Suppr超能文献

人工智能是否影响了药物发现?

Has Artificial Intelligence Impacted Drug Discovery?

机构信息

Molecular AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.

出版信息

Methods Mol Biol. 2022;2390:153-176. doi: 10.1007/978-1-0716-1787-8_6.

Abstract

Artificial intelligence (AI) tools find increasing application in drug discovery supporting every stage of the Design-Make-Test-Analyse (DMTA) cycle. The main focus of this chapter is the application in molecular generation with the aid of deep neural networks (DNN). We present a historical overview of the main advances in the field. We analyze the concepts of distribution and goal-directed learning and then highlight some of the recent applications of generative models in drug design with a focus into research work from the biopharmaceutical industry. We present in some more detail REINVENT which is an open-source software developed within our group in AstraZeneca and the main platform for AI molecular design support for a number of medicinal chemistry projects in the company and we also demonstrate some of our work in library design. Finally, we present some of the main challenges in the application of AI in Drug Discovery and different approaches to respond to these challenges which define areas for current and future work.

摘要

人工智能(AI)工具在药物发现中得到越来越多的应用,支持设计-制造-测试-分析(DMTA)周期的每个阶段。本章的主要重点是借助深度神经网络(DNN)进行分子生成的应用。我们介绍了该领域的主要进展的历史概述。我们分析了分布和目标导向学习的概念,然后重点介绍了最近在药物设计中生成模型的一些应用,重点是来自生物制药行业的研究工作。我们更详细地介绍了我们在 AstraZeneca 集团内部开发的开源软件 REINVENT,以及为公司的许多药物化学项目提供 AI 分子设计支持的主要平台,我们还展示了我们在库设计方面的一些工作。最后,我们介绍了 AI 在药物发现中的应用中的一些主要挑战,以及应对这些挑战的不同方法,这些方法定义了当前和未来工作的领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验