Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Methods Mol Biol. 2022;2440:271-288. doi: 10.1007/978-1-0716-2051-9_16.
Over the past years several forms of superresolution fluorescence microscopy have been developed that offer the possibility to study cellular structures and protein distribution at a resolution well below the diffraction limit of conventional fluorescence microscopy (<200 nm). A particularly powerful superresolution technique is single-molecule localization microscopy (SMLM). SMLM enables the quantitative investigation of subcellular protein distribution at a spatial resolution up to tenfold higher than conventional imaging, even in live cells. Not surprisingly, SMLM has therefore been used in many applications in biology, including neuroscience. This chapter provides a step-by-step SMLM protocol to visualize the nanoscale organization of endogenous proteins in dissociated neurons but can be extended to image other adherent cultured cells. We outline a number of methods to visualize endogenous proteins in neurons for live-cell and fixed application, including immunolabeling, the use of intrabodies for live-cell SMLM, and endogenous tagging using CRISPR/Cas9.
在过去的几年中,已经开发出了几种超分辨率荧光显微镜技术,这些技术提供了在低于传统荧光显微镜(<200nm)的分辨率下研究细胞结构和蛋白质分布的可能性。一种特别强大的超分辨率技术是单分子定位显微镜(SMLM)。SMLM 能够以比传统成像高十倍的空间分辨率定量研究亚细胞蛋白质分布,即使在活细胞中也是如此。毫不奇怪,SMLM 因此已在生物学的许多应用中得到了应用,包括神经科学。本章提供了一个分步 SMLM 方案,用于可视化分离神经元中内源性蛋白质的纳米级组织,但可以扩展到其他贴壁培养细胞的成像。我们概述了一些用于活细胞和固定应用的可视化神经元内源性蛋白质的方法,包括免疫标记、用于活细胞 SMLM 的内源性抗体的使用以及使用 CRISPR/Cas9 进行内源性标记。