Nanobioimaging Lab, Department of Instrumentation & Applied Physics, Indian Institute of Science, Bangalore, INDIA.
PLoS One. 2020 Nov 16;15(11):e0242452. doi: 10.1371/journal.pone.0242452. eCollection 2020.
To be able to resolve molecular-clusters it is crucial to access vital information (such as, molecule density, cluster-size, and others) that are key in understanding disease progression and the underlying mechanism. Traditional single-molecule localization microscopy (SMLM) techniques use molecules of variable sizes (as determined by its localization precision (LP)) to reconstruct a super-resolution map. This results in an image with overlapping and superimposing PSFs (due to a wide size-spectrum of single-molecules) that undermine image resolution. Ideally, it should be possible to identify the brightest molecules (also termed as the fortunate molecules) to reconstruct ultra-superresolution map, provided sufficient statistics is available from the recorded data. Probabilistic Optically-Selective Single-molecule Imaging Based Localization Encoded (POSSIBLE) microscopy explores this possibility by introducing a narrow probability size-distribution of single-molecules (narrow size-spectrum about a predefined mean-size). The reconstruction begins by presetting the mean and variance of the narrow distribution function (Gaussian function). Subsequently, the dataset is processed and single-molecules are filtered by the Gaussian function to remove unfortunate molecules. The fortunate molecules thus retained are then mapped to reconstruct an ultra-superresolution map. In-principle, the POSSIBLE microscopy technique is capable of infinite resolution (resolution of the order of actual single-molecule size) provided enough fortunate molecules are experimentally detected. In short, bright molecules (with large emissivity) holds the key. Here, we demonstrate the POSSIBLE microscopy technique and reconstruct single-molecule images with an average PSF sizes of σ ± Δσ = 15 ± 10 nm, 30 ± 2 nm & 50 ± 2 nm. Results show better-resolved Dendra2-HA clusters with large cluster-density in transfected NIH3T3 fibroblast cells as compared to the traditional SMLM techniques. Cluster analysis indicates densely-packed HA molecules, HA-HA interaction, and a surge in the number of HA molecules per cluster post 24 Hrs of transfection. The study using POSSIBLE microscopy introduces new insights in influenza biology. We anticipate exciting applications in the multidisciplinary field of disease biology, oncology, and biomedical imaging.
为了能够解析分子簇,获取关键的重要信息(例如分子密度、簇大小等)至关重要,这些信息有助于理解疾病的进展和潜在机制。传统的单分子定位显微镜(SMLM)技术使用大小不同的分子(由其定位精度(LP)决定)来重构超分辨率图谱。这导致图像中存在 PSF 重叠和叠加(由于单分子的宽谱范围),从而降低了图像分辨率。理想情况下,应该有可能识别最亮的分子(也称为幸运分子),以重构超超分辨率图谱,前提是记录的数据具有足够的统计信息。基于概率光学选择单分子成像的定位编码(POSSIBLE)显微镜通过引入单分子的窄概率分布(关于预定义均值的窄谱范围)来探索这种可能性。重建过程首先预设窄分布函数(高斯函数)的均值和方差。随后,对数据集进行处理,并通过高斯函数对单分子进行过滤,以去除不幸分子。保留下来的幸运分子随后被映射以重构超超分辨率图谱。从原理上讲,只要实验检测到足够数量的幸运分子,POSSIBLE 显微镜技术就能够实现无限分辨率(分辨率接近实际单分子大小)。简而言之,亮分子(具有较大的发射率)是关键。在这里,我们展示了 POSSIBLE 显微镜技术,并重构了平均 PSF 大小为 σ±Δσ=15±10nm、30±2nm 和 50±2nm 的单分子图像。结果表明,与传统的 SMLM 技术相比,在转染的 NIH3T3 成纤维细胞中,Dendra2-HA 簇具有更大的簇密度,分辨率更高。聚类分析表明,HA 分子紧密堆积,HA-HA 相互作用,以及转染后 24 小时内每个簇中的 HA 分子数量增加。使用 POSSIBLE 显微镜进行的研究为流感生物学提供了新的见解。我们预计它将在疾病生物学、肿瘤学和生物医学成像等多学科领域得到令人兴奋的应用。