Suppr超能文献

利用基因工程改造的大肠杆菌从纸浆厂硬木和软木亚硫酸盐废液中生产乙醇。

Production of ethanol from pulp mill hardwood and softwood spent sulfite liquors by genetically engineered E. coli.

作者信息

Lawford H G, Rousseau J D

机构信息

Department of Biochemistry, University of Toronto, Ontario, Canada.

出版信息

Appl Biochem Biotechnol. 1993 Spring;39-40:667-85. doi: 10.1007/BF02919027.

Abstract

Although lignocellulosic biomass and wastes are targeted as an attractive alternative fermentation feedstock for the production of fuel ethanol, cellulosic ethanol is not yet an industrial reality because of problems in bioconversion technologies relating both to depolymerization and fermentation. In the production of wood pulp by the sulfite process, about 50% of the wood (hemicellulose and lignin) is dissolved to produce cellulose pulp, and the pulp mill effluent ("spent sulfite liquor" SSL) represents the only lignocellulosic hydrolysate available today in large quantities (about 90 billion liters annually worldwide). Although softwoods have been the traditional feedstock for pulping operations, hardwood pulping is becoming more popular, and the pentose sugars in hardwood SSL (principally xylose) are not fermented by the yeasts currently being used in the production of ethanol from softwood SSL. This study assessed the fermentation performance characteristics of a patented (US Pat. 5,000,000), recombinant Escherichia coli B (ATCC 11303 pLOI297) in anaerobic batch fermentations of both nutrient-supplemented soft and hardwood SSL (30-35 g/L total reducing sugars). The pH was controlled at 7.0 to maximize tolerance to acetic acid. In contrast to the high-performance characteristics exhibited in synthetic media, formulated to mimic the composition of softwood and hardwood SSL (yield approaching theoretical maximum), performance in SSL media was variable with conversion efficiencies in the range of 67-84% for hardwood SSL and 53-76% for softwood SSL. Overlimiting treatment of HSSL, using Ca(OH)2, improved overall volumetric productivity two- to sevenfold to a max of 0.42 g/L/h at an initial cell loading of 0.5 g dry wt/L. A conversion efficiency of 92% (6.1 g/L ethanol) was achieved using diluted Ca(OH)2-treated hardwood SSL. The variable behavior of this particular genetic construct is viewed as a major detractant regarding its candidacy as a biocatalyst for SSL fermentations.

摘要

尽管木质纤维素生物质和废料被视为生产燃料乙醇颇具吸引力的替代性发酵原料,但由于生物转化技术在解聚和发酵方面存在问题,纤维素乙醇尚未实现工业化生产。在亚硫酸盐法生产木浆的过程中,约50%的木材(半纤维素和木质素)被溶解以生产纤维素浆,制浆厂废水(“亚硫酸盐废液”SSL)是目前唯一大量可得的木质纤维素水解产物(全球每年约900亿升)。虽然针叶木一直是制浆作业的传统原料,但阔叶木制浆正变得越来越普遍,阔叶木SSL中的戊糖(主要是木糖)不能被目前用于针叶木SSL生产乙醇的酵母发酵。本研究评估了一种专利菌株(美国专利5,000,000)重组大肠杆菌B(ATCC 11303 pLOI297)在添加营养物质的针叶木和阔叶木SSL(总还原糖30 - 35 g/L)厌氧分批发酵中的发酵性能特征。将pH控制在7.0以最大化对乙酸的耐受性。与模拟针叶木和阔叶木SSL组成的合成培养基中表现出的高性能特征(产率接近理论最大值)不同,在SSL培养基中的性能各不相同,阔叶木SSL的转化效率在67 - 84%之间,针叶木SSL的转化效率在53 - 76%之间。使用Ca(OH)₂对HSSL进行过限量处理,将初始细胞负载量为0.5 g干重/L时的总体积生产率提高了两到七倍,最高达到0.42 g/L/h。使用稀释的Ca(OH)₂处理的阔叶木SSL实现了92%(6.1 g/L乙醇)的转化效率。这种特定基因构建体的可变行为被视为其作为SSL发酵生物催化剂候选物的主要不利因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验