Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Flanders B-3001, Belgium.
Biotechnol Biofuels. 2013 Aug 26;6(1):120. doi: 10.1186/1754-6834-6-120.
In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Saccharomyces cerevisiae strains, the resulting strains still lacked sufficient inhibitor tolerance for efficient sugar fermentation in lignocellulose hydrolysates. The aim of the present work was to combine high xylose fermentation activity and high inhibitor tolerance in a single industrial yeast strain.
We have screened 580 yeast strains for high inhibitor tolerance using undetoxified acid-pretreated spruce hydrolysate and identified a triploid industrial baker's yeast strain as having the highest inhibitor tolerance. From this strain, a mating competent diploid segregant with even higher inhibitor tolerance was obtained. It was crossed with the recently developed D-xylose fermenting diploid industrial strain GS1.11-26, with the Ethanol Red genetic background. Screening of 819 diploid segregants from the tetraploid hybrid resulted in two strains, GSF335 and GSF767, combining high inhibitor tolerance and efficient xylose fermentation. In a parallel approach, meiotic recombination of GS1.11-26 with a haploid segregant of Ethanol Red and screening of 104 segregants resulted in a similar inhibitor tolerant diploid strain, GSE16. The three superior strains exhibited significantly improved tolerance to inhibitors in spruce hydrolysate, higher glucose consumption rates, higher aerobic growth rates and higher maximal ethanol accumulation capacity in very-high gravity fermentation, compared to GS1.11-26. In complex medium, the D-xylose utilization rate by the three superior strains ranged from 0.36 to 0.67 g/g DW/h, which was lower than that of GS1.11-26 (1.10 g/g DW/h). On the other hand, in batch fermentation of undetoxified acid-pretreated spruce hydrolysate, the three superior strains showed comparable D-xylose utilization rates as GS1.11-26, probably because of their higher inhibitor tolerance. They produced up to 23% more ethanol compared to Ethanol Red.
We have successfully constructed three superior industrial S. cerevisiae strains that combine efficient D-xylose utilization with high inhibitor tolerance. Since the background strain Ethanol Red has a proven record of successful industrial application, the three new superior strains have strong potential for direct application in industrial bioethanol production.
除了高效利用戊糖外,高抑制剂耐受性也是任何用于利用木质纤维素生物质进行经济可行的工业生物乙醇生产的生物体所必需的关键特性。尽管最近的工作已经成功地在稳健的工业酿酒酵母菌株中建立了高效的木糖发酵,但由此产生的菌株在木质纤维素水解物中的糖发酵中仍然缺乏足够的抑制剂耐受性。本研究的目的是在单个工业酵母菌株中结合高木糖发酵活性和高抑制剂耐受性。
我们使用未经解毒的酸预处理云杉水解物筛选了 580 株酵母菌株,以鉴定高抑制剂耐受性,并鉴定出一株三倍体工业面包酵母菌株具有最高的抑制剂耐受性。从该菌株中获得了一株具有更高抑制剂耐受性的交配能力的二倍体分离子。将其与最近开发的具有 Ethanol Red 遗传背景的 D-木糖发酵二倍体工业菌株 GS1.11-26 杂交。从四倍体杂种中筛选 819 个二倍体分离子,得到两株菌株 GSF335 和 GSF767,它们结合了高抑制剂耐受性和高效木糖发酵。在平行方法中,GS1.11-26 与 Ethanol Red 的一个单倍体分离子进行减数分裂重组,并筛选了 104 个分离子,得到了一株类似的具有抑制剂耐受性的二倍体菌株 GSE16。与 GS1.11-26 相比,这三个优良菌株在云杉水解物中对抑制剂的耐受性显著提高,葡萄糖消耗率更高,好氧生长速度更快,在高浓度发酵中最大乙醇积累能力更高。在复杂培养基中,三个优良菌株的 D-木糖利用率范围为 0.36-0.67 g/g DW/h,低于 GS1.11-26(1.10 g/g DW/h)。另一方面,在未经解毒的酸预处理云杉水解物的分批发酵中,三个优良菌株的 D-木糖利用率与 GS1.11-26 相当,这可能是由于它们更高的抑制剂耐受性。与 Ethanol Red 相比,它们产生的乙醇多 23%。
我们成功构建了三株优良的工业酿酒酵母菌株,它们将高效利用 D-木糖与高抑制剂耐受性相结合。由于背景菌株 Ethanol Red 具有成功工业应用的记录,因此这三个新的优良菌株具有在工业生物乙醇生产中直接应用的强大潜力。