Suppr超能文献

直接转化以实现神经胶质细胞命运:少突胶质细胞和施万细胞。

Direct Conversion to Achieve Glial Cell Fates: Oligodendrocytes and Schwann Cells.

作者信息

Yun Wonjin, Kim Yong Jun, Lee Gabsang

机构信息

Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Int J Stem Cells. 2022 Feb 28;15(1):14-25. doi: 10.15283/ijsc22008.

Abstract

Glia have been known for its pivotal roles in physiological and pathological conditions in the nervous system. To study glial biology, multiple approaches have been applied to utilize glial cells for research, including stem cell-based technologies. Human glial cells differentiated from pluripotent stem cells are now available, allowing us to study the structural and functional roles of glia in the nervous system, although the efficiency is still low. Direct conversion is an advanced strategy governing fate conversion of diverse cell types directly into the desired lineage. This novel strategy stands as a promising approach for preliminary research and regenerative medicine. Direct conversion employs genetic and environmental cues to change cell fate to that with the required functional cell properties while retaining maturity-related molecular features. As an alternative method, it is now possible to obtain a variety of mature cell populations that could not be obtained using conventional differentiation methods. This review summarizes current achievements in obtaining glia, particularly oligodendrocytes and Schwann cells.

摘要

神经胶质细胞在神经系统的生理和病理状况中所起的关键作用已为人所知。为了研究神经胶质生物学,人们已应用多种方法利用神经胶质细胞进行研究,包括基于干细胞的技术。现在可以获得从多能干细胞分化而来的人类神经胶质细胞,这使我们能够研究神经胶质细胞在神经系统中的结构和功能作用,尽管效率仍然很低。直接重编程是一种先进的策略,可将多种细胞类型的命运直接转变为所需的细胞谱系。这种新策略是初步研究和再生医学的一种很有前景的方法。直接重编程利用遗传和环境线索将细胞命运转变为具有所需功能细胞特性的命运,同时保留与成熟相关的分子特征。作为一种替代方法,现在有可能获得使用传统分化方法无法获得的各种成熟细胞群体。本综述总结了在获得神经胶质细胞,特别是少突胶质细胞和雪旺细胞方面的当前成就。

相似文献

1
Direct Conversion to Achieve Glial Cell Fates: Oligodendrocytes and Schwann Cells.
Int J Stem Cells. 2022 Feb 28;15(1):14-25. doi: 10.15283/ijsc22008.
2
[Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
Biol Aujourdhui. 2011;205(1):53-61. doi: 10.1051/jbio/2011008. Epub 2011 Apr 19.
3
Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells.
PLoS One. 2017 Feb 13;12(2):e0171947. doi: 10.1371/journal.pone.0171947. eCollection 2017.
4
Origin, lineage and function of cerebellar glia.
Prog Neurobiol. 2013 Oct;109:42-63. doi: 10.1016/j.pneurobio.2013.08.001. Epub 2013 Aug 25.
5
The Repo Homeodomain Transcription Factor Suppresses Hematopoiesis in and Preserves the Glial Fate.
J Neurosci. 2019 Jan 9;39(2):238-255. doi: 10.1523/JNEUROSCI.1059-18.2018. Epub 2018 Nov 30.
7
Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation.
Front Cell Neurosci. 2017 Feb 13;11:24. doi: 10.3389/fncel.2017.00024. eCollection 2017.
8
Roles of NG2-glia in ischemic stroke.
CNS Neurosci Ther. 2017 Jul;23(7):547-553. doi: 10.1111/cns.12690. Epub 2017 Mar 19.
9
AAV Targeting of Glial Cell Types in the Central and Peripheral Nervous System and Relevance to Human Gene Therapy.
Front Mol Neurosci. 2021 Jan 11;13:618020. doi: 10.3389/fnmol.2020.618020. eCollection 2020.
10
[Glial cells function as neural stem cells and progenitor cells].
Sheng Li Xue Bao. 2017 Apr 25;69(2):207-217.

引用本文的文献

1
Pathologic and Therapeutic Schwann Cells.
Cells. 2025 Aug 28;14(17):1336. doi: 10.3390/cells14171336.
3
SARS-CoV-2 infection exacerbates the cellular pathology of Parkinson's disease in human dopaminergic neurons and a mouse model.
Cell Rep Med. 2024 May 21;5(5):101570. doi: 10.1016/j.xcrm.2024.101570. Epub 2024 May 14.
4
Stem Cell-Based Approaches in Parkinson's Disease Research.
Int J Stem Cells. 2025 Feb 28;18(1):21-36. doi: 10.15283/ijsc23169. Epub 2024 Mar 7.
5
Enhancing Viability of Human Embryonic Stem Cells during Cryopreservation via RGD-REP-Mediated Activation of FAK/AKT/FoxO3a Signaling Pathway.
Tissue Eng Regen Med. 2023 Dec;20(7):1133-1143. doi: 10.1007/s13770-023-00568-3. Epub 2023 Aug 23.
6
Peripheral Neuron-Organoid Interaction Induces Colonic Epithelial Differentiation via Non-Synaptic Substance P Secretion.
Int J Stem Cells. 2023 Aug 30;16(3):269-280. doi: 10.15283/ijsc23026. Epub 2023 Jun 30.
7
Development and In Vitro Differentiation of Schwann Cells.
Cells. 2022 Nov 24;11(23):3753. doi: 10.3390/cells11233753.
8
New insights into the epitranscriptomic control of pluripotent stem cell fate.
Exp Mol Med. 2022 Oct;54(10):1643-1651. doi: 10.1038/s12276-022-00824-x. Epub 2022 Oct 21.
9
Lo and Behold, the Lab-Grown Organs Have Arrived!
Int J Stem Cells. 2022 Feb 28;15(1):1-2. doi: 10.15283/ijsc22026.

本文引用的文献

1
OCT4-induced oligodendrocyte progenitor cells promote remyelination and ameliorate disease.
NPJ Regen Med. 2022 Jan 13;7(1):4. doi: 10.1038/s41536-021-00199-z.
3
The Age of Brain Organoids: Tailoring Cell Identity and Functionality for Normal Brain Development and Disease Modeling.
Front Neurosci. 2021 Aug 13;15:674563. doi: 10.3389/fnins.2021.674563. eCollection 2021.
4
Growing Glia: Cultivating Human Stem Cell Models of Gliogenesis in Health and Disease.
Front Cell Dev Biol. 2021 Mar 25;9:649538. doi: 10.3389/fcell.2021.649538. eCollection 2021.
5
How well do brain organoids capture your brain?
iScience. 2021 Jan 19;24(2):102063. doi: 10.1016/j.isci.2021.102063. eCollection 2021 Feb 19.
6
Embryonic stem cell-like subpopulations are present within Schwannoma.
J Clin Neurosci. 2020 Nov;81:201-209. doi: 10.1016/j.jocn.2020.09.037. Epub 2020 Oct 13.
8
What are activated and reactive glia and what is their role in neurodegeneration?
Neurobiol Dis. 2021 Jan;148:105172. doi: 10.1016/j.nbd.2020.105172. Epub 2020 Nov 7.
9
Schwann Cell Role in Selectivity of Nerve Regeneration.
Cells. 2020 Sep 20;9(9):2131. doi: 10.3390/cells9092131.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验