Suppr超能文献

细胞图像分析在痰液细胞异型性诊断中的应用:综述

Application of cell-image analysis to the diagnosis of cellular atypias in sputum: a review.

作者信息

Greenberg S D, Hunter N R, Taylor G R, Swank P R, Winkler D G, Spjut H J, Estrada R G, Grenia C, Clark M, Herson J

出版信息

Diagn Cytopathol. 1986 Apr-Jun;2(2):168-74. doi: 10.1002/dc.2840020214.

Abstract

The incidence of carcinoma of the lung continues to steadily rise, and attempts at early diagnosis to improve prognosis have not yet been rewarding. The goal of our research is to decrease the incidence of lung cancer by detecting premalignant bronchial dysplasias in individuals in whom development of lung cancer is potentially preventable. To achieve this, we have developed an atypia status index (ASI)--the assignment of numerical values to the various stages of atypical bronchial epithelial cells in sputum, and a cell atypia profile (CAP)--an ASI-generated scale of 200 such atypical bronchial epithelial cells in a single sputum specimen. Computerized cell-image analysis techniques and statistical data analysis are used to generate the ASIs and CAPs for each subject. This study is a step toward the development of an automated cell-image analysis system for mass screening of premalignant atypias in sputum of those considered at high risk for lung cancer (i.e., men and women of 40 yr of age and older, with more than 20 pack-yr of cigarette smoking).

摘要

肺癌的发病率持续稳步上升,而旨在通过早期诊断改善预后的努力尚未取得成效。我们研究的目标是通过检测那些肺癌发展可能可预防的个体中的癌前支气管发育异常来降低肺癌的发病率。为实现这一目标,我们开发了一种异型性状态指数(ASI)——为痰液中非典型支气管上皮细胞的不同阶段赋予数值,以及一种细胞异型性图谱(CAP)——在单个痰液标本中由ASI生成的200个此类非典型支气管上皮细胞的量表。使用计算机化细胞图像分析技术和统计数据分析为每个受试者生成ASI和CAP。本研究朝着开发一种自动细胞图像分析系统迈出了一步,该系统用于对被认为有肺癌高风险的人群(即40岁及以上、吸烟史超过20包年的男性和女性)的痰液中的癌前异型性进行大规模筛查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验