Suppr超能文献

小麦网络:一种基于优化混合任务级联模型的自动密集小麦穗分割方法。

Wheat-Net: An Automatic Dense Wheat Spike Segmentation Method Based on an Optimized Hybrid Task Cascade Model.

作者信息

Zhang Jiajing, Min An, Steffenson Brian J, Su Wen-Hao, Hirsch Cory D, Anderson James, Wei Jian, Ma Qin, Yang Ce

机构信息

College of Information and Electrical Engineering, China Agricultural University, Beijing, China.

The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

出版信息

Front Plant Sci. 2022 Feb 10;13:834938. doi: 10.3389/fpls.2022.834938. eCollection 2022.

Abstract

Precise segmentation of wheat spikes from a complex background is necessary for obtaining image-based phenotypic information of wheat traits such as yield estimation and spike morphology. A new instance segmentation method based on a Hybrid Task Cascade model was proposed to solve the wheat spike detection problem with improved detection results. In this study, wheat images were collected from fields where the environment varied both spatially and temporally. Res2Net50 was adopted as a backbone network, combined with multi-scale training, deformable convolutional networks, and Generic ROI Extractor for rich feature learning. The proposed methods were trained and validated, and the average precision (AP) obtained for the bounding box and mask was 0.904 and 0.907, respectively, and the accuracy for wheat spike counting was 99.29%. Comprehensive empirical analyses revealed that our method (Wheat-Net) performed well on challenging field-based datasets with mixed qualities, particularly those with various backgrounds and wheat spike adjacence/occlusion. These results provide evidence for dense wheat spike detection capabilities with masking, which is useful for not only wheat yield estimation but also spike morphology assessments.

摘要

从小麦复杂背景中精确分割出麦穗,对于获取基于图像的小麦性状表型信息(如产量估算和穗形态)至关重要。为解决小麦穗检测问题并提高检测结果,提出了一种基于混合任务级联模型的新实例分割方法。在本研究中,从小麦田间采集图像,这些田间环境在空间和时间上都存在差异。采用Res2Net50作为骨干网络,结合多尺度训练、可变形卷积网络和通用感兴趣区域提取器进行丰富的特征学习。对所提方法进行了训练和验证,边界框和掩码的平均精度(AP)分别为0.904和0.907,小麦穗计数准确率为99.29%。综合实证分析表明,我们的方法(Wheat-Net)在具有混合质量的具有挑战性的田间数据集上表现良好,特别是那些具有各种背景以及小麦穗相邻/遮挡情况的数据集。这些结果为具有掩码的密集小麦穗检测能力提供了证据,这不仅对小麦产量估算有用,而且对穗形态评估也有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/805a/8866238/79d7f6adc8fb/fpls-13-834938-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验