Chen Liang, Lin Genghong, Jiao Feng
Guangzhou Center for Applied Mathematics, Guangzhou University, Guangzhou, People's Republic of China.
School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, People's Republic of China.
R Soc Open Sci. 2022 Feb 16;9(2):211757. doi: 10.1098/rsos.211757. eCollection 2022 Feb.
Gene activation is a random process, modelled as a framework of multiple rate-limiting steps listed sequentially, in parallel or in combination. Together with suitably assumed processes of gene inactivation, transcript birth and death, the step numbers and parameters in activation frameworks can be estimated by fitting single-cell transcription data. However, current algorithms require computing master equations that are tightly correlated with prior hypothetical frameworks of gene activation. We found that prior estimation of the framework can be facilitated by the traditional dynamical data of mRNA average level (), presenting discriminated dynamical features. Rigorous theory regarding () profiles allows to confidently rule out the frameworks that fail to capture () features and to test potential competent frameworks by fitting () data. We implemented this procedure for a large number of mouse fibroblast genes under tumour necrosis factor induction and determined exactly the 'cross-talking -state' framework; the cross-talk between the signalling and basal pathways is crucial to trigger the first peak of (), while the following damped gentle () oscillation is regulated by the multi-step basal pathway. This framework can be used to fit sophisticated single-cell data and may facilitate a more accurate understanding of stochastic activation of mouse fibroblast genes.
基因激活是一个随机过程,被建模为一系列依次列出、并行或组合的多个限速步骤的框架。连同适当假设的基因失活、转录本产生和死亡过程,通过拟合单细胞转录数据可以估计激活框架中的步骤数和参数。然而,当前的算法需要计算与先前假设的基因激活框架紧密相关的主方程。我们发现,mRNA平均水平()的传统动态数据可以促进对框架的先验估计,呈现出有区别的动态特征。关于()分布的严格理论允许自信地排除未能捕捉()特征的框架,并通过拟合()数据来测试潜在的有效框架。我们对肿瘤坏死因子诱导下的大量小鼠成纤维细胞基因实施了这一程序,并精确确定了“串扰状态”框架;信号通路和基础通路之间的串扰对于触发()的第一个峰值至关重要,而随后的衰减平缓()振荡则由多步骤基础通路调节。这个框架可用于拟合复杂的单细胞数据,并可能有助于更准确地理解小鼠成纤维细胞基因的随机激活。