Suppr超能文献

循环肿瘤细胞和白细胞的图像分析可预测乳腺癌患者的生存情况和转移模式。

Image Analysis of Circulating Tumor Cells and Leukocytes Predicts Survival and Metastatic Pattern in Breast Cancer Patients.

作者信息

Da Col Giacomo, Del Ben Fabio, Bulfoni Michela, Turetta Matteo, Gerratana Lorenzo, Bertozzi Serena, Beltrami Antonio Paolo, Cesselli Daniela

机构信息

Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.

Department of Medicine, University of Udine, Udine, Italy.

出版信息

Front Oncol. 2022 Feb 10;12:725318. doi: 10.3389/fonc.2022.725318. eCollection 2022.

Abstract

BACKGROUND

The purpose of the present work was to test whether quantitative image analysis of circulating cells can provide useful clinical information targeting bone metastasis (BM) and overall survival (OS >30 months) in metastatic breast cancer (MBC).

METHODS

Starting from cell images of epithelial circulating tumor cells (eCTC) and leukocytes (CD45pos) obtained with DEPArray, we identified the most significant features and applied single-variable and multi-variable methods, screening all combinations of four machine-learning approaches (Naïve Bayes, Logistic regression, Decision Trees, Random Forest).

RESULTS

Best predictive features were circularity (OS) and diameter (BM), in both eCTC and CD45pos. Median difference in OS was 15 vs. 43 (months), p = 0.03 for eCTC and 19 vs. 36, p = 0.16 for CD45pos. Prediction for BM showed low accuracy (64%, 53%) but strong positive predictive value PPV (79%, 91%) for eCTC and CD45, respectively. Best machine learning model was Naïve Bayes, showing 46 vs 11 (months), p <0.0001 for eCTC; 12.5 vs. 45, p = 0.0004 for CD45pos and 11 vs. 45, p = 0.0003 for eCTC + CD45pos. BM prediction reached 91% accuracy with eCTC, 84% with CD45pos and 91% with combined model.

CONCLUSIONS

Quantitative image analysis and machine learning models were effective methods to predict survival and metastatic pattern, with both eCTC and CD45pos containing significant and complementary information.

摘要

背景

本研究的目的是测试循环细胞的定量图像分析是否能为转移性乳腺癌(MBC)的骨转移(BM)和总生存期(OS>30个月)提供有用的临床信息。

方法

从通过DEPArray获得的上皮循环肿瘤细胞(eCTC)和白细胞(CD45阳性)的细胞图像开始,我们确定了最显著的特征,并应用单变量和多变量方法,筛选了四种机器学习方法(朴素贝叶斯、逻辑回归、决策树、随机森林)的所有组合。

结果

在eCTC和CD45阳性细胞中,最佳预测特征分别是圆形度(OS)和直径(BM)。eCTC的OS中位数差异为15个月对43个月,p = 0.03;CD45阳性细胞的OS中位数差异为19个月对36个月,p = 0.16。BM预测的准确率较低(分别为64%、53%),但eCTC和CD45阳性细胞的阳性预测值(PPV)较高(分别为79%、91%)。最佳机器学习模型是朴素贝叶斯,eCTC的结果显示为46个月对11个月,p <0.0001;CD45阳性细胞的结果显示为12.5个月对45个月,p = 0.0004;eCTC + CD45阳性细胞的结果显示为11个月对45个月,p = 0.0003。BM预测在eCTC中准确率达到91%,在CD45阳性细胞中为84%,在联合模型中为91%。

结论

定量图像分析和机器学习模型是预测生存期和转移模式的有效方法,eCTC和CD45阳性细胞均包含重要且互补的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c72/8866934/779314e895b3/fonc-12-725318-g001.jpg

相似文献

1
Image Analysis of Circulating Tumor Cells and Leukocytes Predicts Survival and Metastatic Pattern in Breast Cancer Patients.
Front Oncol. 2022 Feb 10;12:725318. doi: 10.3389/fonc.2022.725318. eCollection 2022.
2
Different levels of Cd45pos leukocytes in the semen of patients with low testicular volume.
Int J Immunopathol Pharmacol. 2015 Mar;28(1):85-92. doi: 10.1177/0394632015572748.
3
Machine learning models in breast cancer survival prediction.
Technol Health Care. 2016;24(1):31-42. doi: 10.3233/THC-151071.
4
Understanding the organ tropism of metastatic breast cancer through the combination of liquid biopsy tools.
Eur J Cancer. 2021 Jan;143:147-157. doi: 10.1016/j.ejca.2020.11.005. Epub 2020 Dec 8.
5
Predicting factors for survival of breast cancer patients using machine learning techniques.
BMC Med Inform Decis Mak. 2019 Mar 22;19(1):48. doi: 10.1186/s12911-019-0801-4.
6
Comparison of machine learning algorithms for the prediction of five-year survival in oral squamous cell carcinoma.
J Oral Pathol Med. 2021 Apr;50(4):378-384. doi: 10.1111/jop.13135. Epub 2020 Dec 15.
10
Application of Machine Learning Techniques to Predict Bone Metastasis in Patients with Prostate Cancer.
Cancer Manag Res. 2021 Nov 23;13:8723-8736. doi: 10.2147/CMAR.S330591. eCollection 2021.

引用本文的文献

2
A Hybrid Intelligence Approach for Circulating Tumor Cell Enumeration in Digital Pathology by Using CNN and Weak Annotations.
IEEE Access. 2023;11:142992-143003. doi: 10.1109/access.2023.3343701. Epub 2023 Dec 18.
3
Circulating Tumour Cells in the Prediction of Bone Metastasis.
Cancers (Basel). 2024 Jan 5;16(2):252. doi: 10.3390/cancers16020252.
4
Platelet-Based Liquid Biopsies through the Lens of Machine Learning.
Cancers (Basel). 2023 Apr 17;15(8):2336. doi: 10.3390/cancers15082336.

本文引用的文献

2
Label-free detection of rare circulating tumor cells by image analysis and machine learning.
Sci Rep. 2020 Jul 22;10(1):12226. doi: 10.1038/s41598-020-69056-1.
3
Epithelial-mesenchymal transition status of circulating tumor cells in breast cancer and its clinical relevance.
Cancer Biol Med. 2020 Feb 15;17(1):169-180. doi: 10.20892/j.issn.2095-3941.2019.0118.
4
Breast cancer induces systemic immune changes on cytokine signaling in peripheral blood monocytes and lymphocytes.
EBioMedicine. 2020 Feb;52:102631. doi: 10.1016/j.ebiom.2020.102631. Epub 2020 Jan 22.
5
Application of an Artificial Intelligence Algorithm to Prognostically Stratify Grade II Gliomas.
Cancers (Basel). 2019 Dec 22;12(1):50. doi: 10.3390/cancers12010050.
6
Examining Peripheral and Tumor Cellular Immunome in Patients With Cancer.
Front Immunol. 2019 Jul 31;10:1767. doi: 10.3389/fimmu.2019.01767. eCollection 2019.
7
Translating insights into tumor evolution to clinical practice: promises and challenges.
Genome Med. 2019 Mar 29;11(1):20. doi: 10.1186/s13073-019-0632-z.
9
Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.
Int J Cancer. 2019 Apr 15;144(8):1941-1953. doi: 10.1002/ijc.31937. Epub 2018 Dec 6.
10
Classification of Cells in CTC-Enriched Samples by Advanced Image Analysis.
Cancers (Basel). 2018 Oct 10;10(10):377. doi: 10.3390/cancers10100377.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验