Vanaja Akkinepally, Yella Venkata Rajesh
Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, Andhra Pradesh, India.
KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522502, Andhra Pradesh, India.
ACS Omega. 2022 Feb 9;7(7):5657-5669. doi: 10.1021/acsomega.1c04603. eCollection 2022 Feb 22.
The eukaryotic transcription is orchestrated from a chunk of the DNA region stated as the core promoter. Multifarious and punctilious core promoter signals, ., TATA-box, Inr, BREs, and Pause Button, are associated with a subset of genes and regulate their spatiotemporal expression. However, the core promoter architecture linked with these signals has not been investigated exhaustively for several species. In this study, we attempted to envisage the adaptive binding landscape of the transcription initiation machinery as a function of DNA structure. To this end, we deployed a set of based DNA structural estimates and regular expression models derived from experiments, molecular dynamic simulations, and theoretical frameworks, and high-throughout promoter data sets retrieved from the eukaryotic promoter database. We categorized protein-coding gene core promoters based on characteristic motifs at precise locations and analyzed the B-DNA structural properties and non-B-DNA structural motifs for 15 different eukaryotic genomes. We observed that Inr, BREd, and no-motif classes display common patterns of DNA sequence and structural environment. TATA-containing, BREu, and Pause Button classes show a deviant behavior with the TATA class displaying varied axial and twisting flexibility while BREu and Pause Button leaned toward G-quadruplex motif enrichment. Intriguingly, DNA meltability and shape signals are conserved irrespective of the presence or absence of distinct core promoter motifs in the majority of species. Altogether, here we delineated the conserved DNA structural signals associated with several promoter classes that may contribute to the chromatin configuration, orchestration of transcription machinery, and DNA duplex melting during the transcription process.
真核生物转录是由一段被称为核心启动子的DNA区域精心编排的。多种精确的核心启动子信号,如TATA盒、起始子(Inr)、BRE元件和暂停按钮,与一部分基因相关联,并调节它们的时空表达。然而,与这些信号相关的核心启动子结构在多个物种中尚未得到详尽研究。在本研究中,我们试图设想转录起始机制的适应性结合格局作为DNA结构的函数。为此,我们采用了一组基于实验、分子动力学模拟和理论框架得出的DNA结构估计值和正则表达式模型,以及从真核生物启动子数据库中检索到的高通量启动子数据集。我们根据精确位置的特征基序对蛋白质编码基因核心启动子进行分类,并分析了15种不同真核生物基因组的B-DNA结构特性和非B-DNA结构基序。我们观察到起始子、下游BRE元件(BREd)和无基序类别显示出DNA序列和结构环境的共同模式。含TATA盒、上游BRE元件(BREu)和暂停按钮类别表现出异常行为,其中TATA盒类别显示出不同的轴向和扭曲灵活性,而BREu和暂停按钮类别倾向于富含G-四链体基序。有趣的是,在大多数物种中,无论是否存在独特的核心启动子基序,DNA的解链能力和形状信号都是保守的。总之,我们在此描绘了与几种启动子类别相关的保守DNA结构信号,这些信号可能有助于染色质构型、转录机制的编排以及转录过程中的DNA双链解链。