Suppr超能文献

利用深度学习算法对新西兰人群的胸部 X 光片进行自动化气胸分诊。

Automated pneumothorax triaging in chest X-rays in the New Zealand population using deep-learning algorithms.

机构信息

Department of Radiology, Dunedin Hospital, Dunedin, New Zealand.

Counties Manukau Health, Auckland, New Zealand.

出版信息

J Med Imaging Radiat Oncol. 2022 Dec;66(8):1035-1043. doi: 10.1111/1754-9485.13393. Epub 2022 Feb 27.

Abstract

INTRODUCTION

The primary aim was to develop convolutional neural network (CNN)-based artificial intelligence (AI) models for pneumothorax classification and segmentation for automated chest X-ray (CXR) triaging. A secondary aim was to perform interpretability analysis on the best-performing candidate model to determine whether the model's predictions were susceptible to bias or confounding.

METHOD

A CANDID-PTX dataset, that included 19,237 anonymized and manually labelled CXRs, was used for training and testing candidate models for pneumothorax classification and segmentation. Evaluation metrics for classification performance included Area under the receiver operating characteristic curve (AUC-ROC), sensitivity and specificity, whilst segmentation performance was measured using mean Dice and true-positive (TP)-Dice coefficients. Interpretability analysis was performed using Grad-CAM heatmaps. Finally, the best-performing model was implemented for a triage simulation.

RESULTS

The best-performing model demonstrated a sensitivity of 0.93, specificity of 0.95 and AUC-ROC of 0.94 in identifying the presence of pneumothorax. A TP-Dice coefficient of 0.69 is given for segmentation performance. In triage simulation, mean reporting delay for pneumothorax-containing CXRs is reduced from 9.8 ± 2 days to 1.0 ± 0.5 days (P-value < 0.001 at 5% significance level), with sensitivity 0.95 and specificity of 0.95 given for the classification performance. Finally, interpretability analysis demonstrated models employed logic understandable to radiologists, with negligible bias or confounding in predictions.

CONCLUSION

AI models can automate pneumothorax detection with clinically acceptable accuracy, and potentially reduce reporting delays for urgent findings when implemented as triaging tools.

摘要

介绍

主要目的是开发基于卷积神经网络(CNN)的人工智能(AI)模型,用于自动胸部 X 射线(CXR)分诊的气胸分类和分割。次要目的是对表现最佳的候选模型进行可解释性分析,以确定模型的预测是否容易受到偏差或混杂因素的影响。

方法

使用 CANDID-PTX 数据集,其中包含 19237 张匿名且经过人工标记的 CXR,用于训练和测试候选模型进行气胸分类和分割。分类性能的评估指标包括接收器工作特征曲线下的面积(AUC-ROC)、敏感性和特异性,而分割性能则使用平均 Dice 和真阳性(TP)-Dice 系数来衡量。使用 Grad-CAM 热图进行可解释性分析。最后,实施表现最佳的模型进行分诊模拟。

结果

表现最佳的模型在识别气胸存在时的敏感性为 0.93,特异性为 0.95,AUC-ROC 为 0.94。分割性能的 TP-Dice 系数为 0.69。在分诊模拟中,气胸 CXR 的平均报告延迟从 9.8±2 天减少到 1.0±0.5 天(在 5%显著性水平下,P 值<0.001),分类性能的敏感性为 0.95,特异性为 0.95。最后,可解释性分析表明,模型使用了放射科医生易于理解的逻辑,预测中几乎没有偏差或混杂因素。

结论

人工智能模型可以以临床可接受的准确性自动检测气胸,并在作为分诊工具实施时可能减少对紧急发现的报告延迟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验