Suppr超能文献

通过超参数调整优化肺癌分类。

Optimizing lung cancer classification through hyperparameter tuning.

作者信息

Nabeel Syed Muhammad, Bazai Sibghat Ullah, Alasbali Nada, Liu Yifan, Ghafoor Muhammad Imran, Khan Rozi, Ku Chin Soon, Yang Jing, Shahab Sana, Por Lip Yee

机构信息

Department of Computer Engineering, Balochistan University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, Balochistan, Pakistan.

Department of Informatics and Computing Systems, College of Computer Science, King Khalid University, Abha, Saudi Arabia.

出版信息

Digit Health. 2024 Apr 30;10:20552076241249661. doi: 10.1177/20552076241249661. eCollection 2024 Jan-Dec.

Abstract

Artificial intelligence is steadily permeating various sectors, including healthcare. This research specifically addresses lung cancer, the world's deadliest disease with the highest mortality rate. Two primary factors contribute to its onset: genetic predisposition and environmental factors, such as smoking and exposure to pollutants. Recognizing the need for more effective diagnosis techniques, our study embarked on devising a machine learning strategy tailored to boost precision in lung cancer detection. Our aim was to devise a diagnostic method that is both less invasive and cost-effective. To this end, we proposed four methods, benchmarking them against prevalent techniques using a universally recognized dataset from Kaggle. Among our methods, one emerged as particularly promising, outperforming the competition in accuracy, precision and sensitivity. This method utilized hyperparameter tuning, focusing on the Gamma and C parameters, which were set at a value of 10. These parameters influence kernel width and regularization strength, respectively. As a result, we achieved an accuracy of 99.16%, a precision of 98% and a sensitivity rate of 100%. In conclusion, our enhanced prediction mechanism has proven to surpass traditional and contemporary strategies in lung cancer detection.

摘要

人工智能正在稳步渗透到包括医疗保健在内的各个领域。这项研究专门针对肺癌,它是世界上死亡率最高的致命疾病。导致其发病的两个主要因素是遗传易感性和环境因素,如吸烟和接触污染物。认识到需要更有效的诊断技术,我们的研究着手设计一种机器学习策略,以提高肺癌检测的精度。我们的目标是设计一种侵入性较小且具有成本效益的诊断方法。为此,我们提出了四种方法,并使用来自Kaggle的公认数据集将它们与流行技术进行基准测试。在我们的方法中,有一种方法特别有前景,在准确性、精确性和敏感性方面优于其他方法。该方法利用超参数调整,重点关注Gamma和C参数,它们的值设置为10。这些参数分别影响内核宽度和正则化强度。结果,我们实现了99.16%的准确率、98%的精确率和100%的敏感度。总之,我们改进的预测机制已证明在肺癌检测方面优于传统和现代策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f37a/11064752/47e3c605e696/10.1177_20552076241249661-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验