Heligman Brian T, Scanlan Kevin P, Manthiram Arumugam
Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States.
ACS Appl Mater Interfaces. 2022 Mar 9;14(9):11408-11414. doi: 10.1021/acsami.1c23529. Epub 2022 Feb 28.
In this work, we introduce a new nanostructured composite foil (NCF) alloying anode framework for high-capacity anode materials for lithium-ion batteries. These materials are manufactured with an accumulative roll-bonding process, a simple route for the generation of hierarchical nanostructures. The model Sn/Cu NCF system provides volumetric capacities between 1000 and 1720 mA h cm, equating to a projected 20-50% increase in cell-level volumetric energy density. The initial electrochemical cycle was associated with an efficient formation process (88-92%) that drastically increased transport kinetics, allowing for rapid lithiation (>8 mA cm) on subsequent cycles. The introduction of a multilayered inactive copper matrix successfully eliminated loss of the active material as a degradation mechanism, while loss of lithium-inventory limited long-term cyclability in lithium-limited environments. Further development of this framework to mitigate loss of lithium inventory may provide a promising route toward the production of high-energy battery materials.
在这项工作中,我们为锂离子电池的高容量负极材料引入了一种新型的纳米结构复合箔(NCF)合金化负极框架。这些材料通过累积轧制粘结工艺制造,这是一种生成分级纳米结构的简单方法。模型Sn/Cu NCF系统的体积容量在1000至1720 mA h cm之间,相当于电池级体积能量密度预计提高20 - 50%。初始电化学循环与高效的形成过程(88 - 92%)相关,该过程极大地提高了传输动力学,使得在后续循环中能够快速锂化(>8 mA cm)。多层非活性铜基体的引入成功消除了活性材料作为降解机制的损失,而锂库存的损失限制了锂受限环境中的长期循环稳定性。进一步改进该框架以减轻锂库存的损失,可能为生产高能量电池材料提供一条有前景的途径。