IEEE Trans Biomed Eng. 2022 Sep;69(9):2826-2838. doi: 10.1109/TBME.2022.3154885. Epub 2022 Aug 19.
Relying on the idea that functional connectivity provides important insights on the underlying dynamic of neuronal interactions, we propose a novel framework that combines functional connectivity estimators and covariance-based pipelines to improve the classification of mental states, such as motor imagery.
A Riemannian classifier is trained for each estimator and an ensemble classifier combines the decisions in each feature space. A thorough assessment of the functional connectivity estimators is provided and the best performing pipeline among those tested, called FUCONE, is evaluated on different conditions and datasets.
Using a meta-analysis to aggregate results across datasets, FUCONE performed significantly better than all state-of-the-art methods.
The performance gain is mostly imputable to the improved diversity of the feature spaces, increasing the robustness of the ensemble classifier with respect to the inter- and intra-subject variability.
Our results offer new insights into the need to consider functional connectivity-based methods to improve the BCI performance.
基于功能连接提供了对神经元相互作用的潜在动态的重要见解的观点,我们提出了一种新的框架,该框架结合了功能连接估计器和基于协方差的管道,以提高对运动想象等心理状态的分类。
为每个估计器训练一个黎曼分类器,并在每个特征空间中组合决策。对功能连接估计器进行了全面评估,并在不同条件和数据集上评估了测试中表现最好的管道,称为 FUCONE。
使用荟萃分析对数据集的结果进行汇总,FUCONE 的表现明显优于所有最先进的方法。
性能的提高主要归因于特征空间的多样性得到了改善,从而提高了集合分类器对个体内和个体间变异性的鲁棒性。
我们的结果为需要考虑基于功能连接的方法来提高 BCI 性能提供了新的见解。