Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
EBioMedicine. 2024 Aug;106:105259. doi: 10.1016/j.ebiom.2024.105259. Epub 2024 Aug 5.
Electroencephalography (EEG) has a long history as a clinical tool to study brain function, and its potential to derive biomarkers for various applications is far from exhausted. Machine learning (ML) can guide future innovation by harnessing the wealth of complex EEG signals to isolate relevant brain activity. Yet, ML studies in EEG tend to ignore physiological artefacts, which may cause problems for deriving biomarkers specific to the central nervous system (CNS).
We present a framework for conceptualising machine learning from CNS versus peripheral signals measured with EEG. A signal representation based on Morlet wavelets allowed us to define traditional brain activity features (e.g. log power) and alternative inputs used by state-of-the-art ML approaches based on covariance matrices. Using more than 2600 EEG recordings from large public databases (TUAB, TDBRAIN), we studied the impact of peripheral signals and artefact removal techniques on ML models in age and sex prediction analyses.
Across benchmarks, basic artefact rejection improved model performance, whereas further removal of peripheral signals using ICA decreased performance. Our analyses revealed that peripheral signals enable age and sex prediction. However, they explained only a fraction of the performance provided by brain signals.
We show that brain signals and body signals, both present in the EEG, allow for prediction of personal characteristics. While these results may depend on specific applications, our work suggests that great care is needed to separate these signals when the goal is to develop CNS-specific biomarkers using ML.
All authors have been working for F. Hoffmann-La Roche Ltd.
脑电图(EEG)作为一种研究大脑功能的临床工具已有很长的历史,其在各种应用中衍生生物标志物的潜力尚未耗尽。机器学习(ML)可以通过利用复杂的 EEG 信号来隔离相关的大脑活动,从而指导未来的创新。然而,EEG 中的 ML 研究往往忽略了生理伪迹,这可能会给衍生特定于中枢神经系统(CNS)的生物标志物带来问题。
我们提出了一种从 CNS 与使用 EEG 测量的外围信号角度来构思机器学习的框架。基于 Morlet 小波的信号表示方法使我们能够定义传统的大脑活动特征(例如对数功率)和基于协方差矩阵的最先进 ML 方法的替代输入。我们使用来自大型公共数据库(TUAB、TDBRAIN)的 2600 多个 EEG 记录,研究了外围信号和去伪迹技术对年龄和性别预测分析中 ML 模型的影响。
在基准测试中,基本的伪迹剔除提高了模型性能,而使用 ICA 进一步去除外围信号则降低了性能。我们的分析表明,外围信号可以进行年龄和性别预测。然而,它们只解释了大脑信号提供的性能的一小部分。
我们表明,EEG 中存在的大脑信号和身体信号都可以用于预测个人特征。虽然这些结果可能取决于特定的应用,但我们的工作表明,当使用 ML 开发 CNS 特定的生物标志物时,需要非常小心地分离这些信号。
所有作者都在为罗氏公司工作。