Wang Qian, Domen Kazunari
Department of Chemical System Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan.
Center for Energy & Environmental Science , Shinshu University , 4-17-1 Wakasato , Nagano-shi , Nagano 380-8553 , Japan.
Chem Rev. 2020 Jan 22;120(2):919-985. doi: 10.1021/acs.chemrev.9b00201. Epub 2019 Aug 8.
Solar-driven water splitting provides a leading approach to store the abundant yet intermittent solar energy and produce hydrogen as a clean and sustainable energy carrier. A straightforward route to light-driven water splitting is to apply self-supported particulate photocatalysts, which is expected to allow solar hydrogen to be competitive with fossil-fuel-derived hydrogen on a levelized cost basis. More importantly, the powder-based systems can lend themselves to making functional panels on a large scale while retaining the intrinsic activity of the photocatalyst. However, all attempts to generate hydrogen via powder-based solar water-splitting systems to date have unfortunately fallen short of the efficiency values required for practical applications. Photocatalysis on photocatalyst particles involves three sequential steps: (i) absorption of photons with higher energies than the bandgap of the photocatalysts, leading to the excitation of electron-hole pairs in the particles, (ii) charge separation and migration of these photoexcited carriers, and (iii) surface chemical reactions based on these carriers. In this review, we focus on the challenges of each step and summarize material design strategies to overcome the obstacles and limitations. This review illustrates that it is possible to employ the fundamental principles underlying photosynthesis and the tools of chemical and materials science to design and prepare photocatalysts for overall water splitting.
太阳能驱动的水分解为储存丰富但间歇性的太阳能以及生产氢气作为一种清洁且可持续的能量载体提供了一种领先的方法。光驱动水分解的一条直接途径是应用自支撑颗粒光催化剂,这有望使太阳能制氢在平准化成本基础上与化石燃料制氢具有竞争力。更重要的是,基于粉末的系统能够在大规模制造功能面板的同时保持光催化剂的固有活性。然而,迄今为止,所有通过基于粉末的太阳能水分解系统制氢的尝试都不幸未能达到实际应用所需的效率值。光催化剂颗粒上的光催化涉及三个连续步骤:(i)吸收能量高于光催化剂带隙的光子,导致颗粒内电子 - 空穴对的激发,(ii)这些光激发载流子的电荷分离和迁移,以及(iii)基于这些载流子的表面化学反应。在这篇综述中,我们关注每个步骤的挑战,并总结克服障碍和限制的材料设计策略。这篇综述表明,利用光合作用的基本原理以及化学和材料科学工具来设计和制备用于整体水分解的光催化剂是可能的。