Suppr超能文献

高活性笼状催化迈克尔加成反应的起源

Origins of High-Activity Cage-Catalyzed Michael Addition.

作者信息

Boaler Patrick J, Piskorz Tomasz K, Bickerton Laura E, Wang Jianzhu, Duarte Fernanda, Lloyd-Jones Guy C, Lusby Paul J

机构信息

EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K.

Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K.

出版信息

J Am Chem Soc. 2024 Jul 17;146(28):19317-19326. doi: 10.1021/jacs.4c05160. Epub 2024 Jul 8.

Abstract

Cage catalysis continues to create significant interest, yet catalyst function remains poorly understood. Herein, we report mechanistic insights into coordination-cage-catalyzed Michael addition using kinetic and computational methods. The study has been enabled by the detection of identifiable catalyst intermediates, which allow the evolution of different cage species to be monitored and modeled alongside reactants and products. The investigations show that the overall acceleration results from two distinct effects. First, the cage reaction shows a thousand-fold increase in the rate constant for the turnover-limiting C-C bond-forming step compared to a reference state. Computational modeling and experimental analysis of activation parameters indicate that this stems from a significant reduction in entropy, suggesting substrate coencapsulation. Second, the cage markedly acidifies the bound pronucleophile, shifting this equilibrium by up to 6 orders of magnitude. The combination of these two factors results in accelerations up to 10 relative to bulk-phase reference reactions. We also show that the catalyst can fundamentally alter the reaction mechanism, leading to intermediates and products that are not observable outside of the cage. Collectively, the results show that cage catalysis can proceed with very high activity and unique selectivity by harnessing a series of individually weak noncovalent interactions.

摘要

笼状催化持续引发了极大的关注,但催化剂的功能仍未得到充分理解。在此,我们报告了利用动力学和计算方法对配位笼催化的迈克尔加成反应的机理见解。通过检测可识别的催化剂中间体,该研究得以实现,这些中间体使得不同笼状物种的演化能够与反应物和产物一起被监测和建模。研究表明,整体加速源于两种不同的效应。首先,与参考状态相比,笼状反应中限制周转的碳 - 碳键形成步骤的速率常数增加了一千倍。对活化参数的计算建模和实验分析表明,这源于熵的显著降低,表明底物共包封。其次,笼状结构显著酸化了结合的亲核试剂,使这种平衡移动了多达6个数量级。这两个因素的结合导致相对于本体相参考反应的加速高达10倍。我们还表明,催化剂可以从根本上改变反应机理,导致在笼外无法观察到的中间体和产物。总体而言,结果表明笼状催化可以通过利用一系列各自较弱的非共价相互作用以非常高的活性和独特的选择性进行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eddd/11258793/58e7e8fc246c/ja4c05160_0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验