Suppr超能文献

量化子流域和基流分区之间对水文过程的相互作用不确定性。

Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes.

机构信息

Hydrology and Water Resources Department, Nanjing Hydraulic Research Institute, Nanjing, China.

College of Hydrology and Water Resources, Hohai University, Nanjing, China.

出版信息

PLoS One. 2022 Mar 1;17(3):e0261859. doi: 10.1371/journal.pone.0261859. eCollection 2022.

Abstract

Base flow, as an important component of runoff, is the main recharge source of runoff during the dry period, especially in the Yellow River Basin located in a semiarid area. However, the process of obtaining base flow has great uncertainty when considering hydrological simulations. Thus, in this study, a three-step framework is proposed, i.e., the particle swarm optimization (PSO) algorithm is used to calibrate model parameters under different subbasin partitioning schemes; then, the hydrograph separation (HYSEP), Improved United Kingdom Institute of Hydrology (IUKIH) and Lyne and Hollick filter (Lyne-Hollick) methods are used to separate the baseflow from the total runoff process, thereby exploring the uncertainty impacts of baseflow segmentation methods on the hydrological simulation process. The subsample-variance-decomposition method is used to quantify the independent and interactive uncertainty in the hydrological simulation process. The results show that the Topmodel model can be better applied to the source area of the Yellow River (the KGE values in the Sub5, Sub13, Sub21, Sub29, Sub37 and Sub13 scenarios were 0.91 and 0.65, 0.94 and 0.86, 0.94 and 0.88, 0.92 and 0.82, 0.95 and 0.89, and 0.92 and 0.83, respectively). The subbasin division uncertainty had less impact on simulated streamflow during the dry season and had a significant impact in the wet season, such as, the subbasin division uncertainty caused the difference between the median of the simulated streamflow to be as high as 213.09 m3/s in August but only 107.19 m3/s in January; Meanwhile, the baseflow segmentation method uncertainty has a significant impact on the annual mean streamflow values under different subbasin segmentation schemes. In addition, the baseflow values estimated by the Lyne-Hollick and HYSEP methods were obviously higher than those estimated by the IUKIH method during the wet season. The uncertainty influence of subbasin partitioning schemes and baseflow segmentation methods had significant differences on hydrological processes in different periods. The uncertainty influence of subbasin partitioning schemes was dominant in the dry season, accounting for 86%, and the baseflow segmentation methods took second place, accounting for approximately 12%. In the wet season, the uncertainty influence of the baseflow segmentation methods was gradually weakened, which may have been due to the uncertainty influence of the hydrological model. These results provide a reference for the calibration and validation of hydrological model parameters using baseflow components.

摘要

基流作为径流的重要组成部分,是枯水期径流的主要补给源,尤其在半干旱地区的黄河流域。然而,在进行水文模拟时,基流的获取过程存在很大的不确定性。因此,本研究提出了一个三步框架,即粒子群优化(PSO)算法用于在不同的子流域划分方案下校准模型参数;然后,采用水文分割(HYSEP)、改进的英国水文研究所(IUKIH)和 Lyne 和 Hollick 滤波器(Lyne-Hollick)方法将基流从总径流过程中分离出来,从而探讨基流分割方法对水文模拟过程的不确定性影响。采用子样本方差分解法来量化水文模拟过程中的独立和交互不确定性。结果表明,Topmodel 模型可以更好地应用于黄河源区(Sub5、Sub13、Sub21、Sub29、Sub37 和 Sub13 情景下的 KGE 值分别为 0.91 和 0.65、0.94 和 0.86、0.94 和 0.88、0.92 和 0.82、0.95 和 0.89 以及 0.92 和 0.83)。子流域划分不确定性对枯水期模拟流量的影响较小,而对雨季的影响较大,例如,子流域划分不确定性导致 8 月份模拟流量的中位数差异高达 213.09m3/s,而 1 月份仅为 107.19m3/s;同时,基流分割方法不确定性对不同子流域分割方案下的年平均流量值有显著影响。此外,在雨季,Lyne-Hollick 和 HYSEP 方法估计的基流值明显高于 IUKIH 方法估计的值。子流域划分方案和基流分割方法的不确定性对不同时期的水文过程有显著影响。在枯水期,子流域划分方案的不确定性影响占主导地位,占 86%,其次是基流分割方法,占约 12%。在雨季,基流分割方法的不确定性影响逐渐减弱,这可能是由于水文模型的不确定性影响。这些结果为基流成分在水文模型参数的校准和验证方面提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd6/8887730/3d8f10898688/pone.0261859.g001.jpg

相似文献

1
Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes.
PLoS One. 2022 Mar 1;17(3):e0261859. doi: 10.1371/journal.pone.0261859. eCollection 2022.
2
Investigating Historical Baseflow Characteristics and Variations in the Upper Yellow River Basin, China.
Int J Environ Res Public Health. 2022 Jul 28;19(15):9267. doi: 10.3390/ijerph19159267.
3
Spatiotemporal heterogeneity and attributions of streamflow and baseflow changes across the headstreams of the Tarim River Basin, Northwest China.
Sci Total Environ. 2023 Jan 15;856(Pt 2):159230. doi: 10.1016/j.scitotenv.2022.159230. Epub 2022 Oct 5.
5
Characterising baseflow signature variability in the Yellow River Basin.
J Environ Manage. 2023 Nov 1;345:118565. doi: 10.1016/j.jenvman.2023.118565. Epub 2023 Jul 8.
6
[Baseflow separation methods in hydrological process research: a review].
Ying Yong Sheng Tai Xue Bao. 2011 Nov;22(11):3073-80.
7
Enhanced SWAT calibration through intelligent range-based parameter optimization.
J Environ Manage. 2024 Sep;367:121933. doi: 10.1016/j.jenvman.2024.121933. Epub 2024 Jul 30.
8
Response of the runoff process to meteorological drought: Baseflow index as an important indicator.
J Environ Manage. 2023 Nov 1;345:118843. doi: 10.1016/j.jenvman.2023.118843. Epub 2023 Aug 18.
10
Overcoming equifinality: time-varying analysis of sensitivity and identifiability of SWAT runoff and sediment parameters in an arid and semiarid watershed.
Environ Sci Pollut Res Int. 2022 May;29(21):31631-31645. doi: 10.1007/s11356-022-18573-9. Epub 2022 Jan 10.

本文引用的文献

2
The impact of watershed delineation on hydrology and water quality simulation.
Environ Monit Assess. 2009 Jan;148(1-4):159-65. doi: 10.1007/s10661-007-0147-8. Epub 2008 Jan 29.
3
Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.
J Environ Qual. 2007 Mar 1;36(2):521-31. doi: 10.2134/jeq2006.0154. Print 2007 Mar-Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验