Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China.
J Environ Manage. 2024 Sep;367:121933. doi: 10.1016/j.jenvman.2024.121933. Epub 2024 Jul 30.
Hydrological models are vital tools in environmental management. Weaknesses in model robustness for hydrological parameters transfer uncertainties to the model outputs. For streamflow, the optimized parameters are the primary source of uncertainty. A reliable calibration approach that reduces prediction uncertainty in model simulations is crucial for enhancing model robustness and reliability. The optimization of parameter ranges is a key aspect of parameter calibration, yet there is a lack of literature addressing the optimization of parameter ranges in hydrological models. In this paper, we introduce a parameter calibration strategy that applies a clustering technique, specifically the Self-Organizing Map (SM), to intelligently navigate the parameter space during the calibration of the Soil and Water Assessment Tool (SWAT) model for monthly streamflow simulation in the Baishan Basin, Jilin Province, China. We selected the representative algorithm, the Sequential Uncertainty Fitting version 2 (SUFI-2), from the commonly used SWAT Calibration and Uncertainty Programs for comparison. We developed three schemes: SUFI-2, SUFI-2-Narrowing Down (SUFI-2-ND), and SM. Multiple diagnostic error metrics were used to compare simulation accuracy and prediction uncertainty. Among all schemes, SM outperformed the others in describing watershed streamflow, particularly excelling in the simulation of spring snowmelt runoff (baseflow period). Additionally, the prediction uncertainty was effectively controlled, demonstrating the SM's adaptability and reliability in the interval optimization process. This provides managers with more credible prediction results, highlighting its potential as a valuable calibration tool in hydrological modeling.
水文模型是环境管理的重要工具。模型对水文参数的稳健性不足会将不确定性传递到模型输出中。对于流量而言,优化的参数是不确定性的主要来源。采用能够降低模型模拟预测不确定性的可靠校准方法对于增强模型稳健性和可靠性至关重要。参数范围的优化是参数校准的关键方面,但水文模型中缺乏关于参数范围优化的文献。本文引入了一种参数校准策略,该策略应用聚类技术(即自组织映射(SM))在吉林省白山水文模型的每月流量模拟的校准过程中智能地导航参数空间。我们选择了常用的 SWAT 校准和不确定性程序中代表性的算法(即顺序不确定性拟合版本 2(SUFI-2))进行比较。我们开发了三种方案:SUFI-2、SUFI-2-缩小范围(SUFI-2-ND)和 SM。我们使用了多种诊断误差指标来比较模拟精度和预测不确定性。在所有方案中,SM 在描述流域流量方面表现优于其他方案,特别是在模拟春季融雪径流(基流期)方面表现出色。此外,还有效地控制了预测不确定性,表明 SM 在区间优化过程中的适应性和可靠性。这为管理者提供了更可信的预测结果,突出了其在水文建模中作为有价值的校准工具的潜力。