Salles Pol, Guzmán Roger, Zanders David, Quintana Alberto, Fina Ignasi, Sánchez Florencio, Zhou Wu, Devi Anjana, Coll Mariona
ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain.
School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Appl Mater Interfaces. 2022 Mar 16;14(10):12845-12854. doi: 10.1021/acsami.1c24450. Epub 2022 Mar 1.
The preparation and manipulation of crystalline yet bendable functional complex oxide membranes has been a long-standing issue for a myriad of applications, in particular, for flexible electronics. Here, we investigate the viability to prepare magnetic and crystalline CoFeO (CFO) membranes by means of the SrAlO (SAO) sacrificial layer approach using chemical deposition techniques. Meticulous chemical and structural study of the SAO surface and SAO/CFO interface properties have allowed us to identify the formation of an amorphous SAO capping layer and carbonates upon air exposure, which dictate the crystalline quality of the subsequent CFO film growth. Vacuum annealing at 800 °C of SAO films promotes the elimination of the surface carbonates and the reconstruction of the SAO surface crystallinity. Ex-situ atomic layer deposition of CFO films at 250 °C on air-exposed SAO offers the opportunity to avoid high-temperature growth while achieving polycrystalline CFO films that can be successfully transferred to a polymer support preserving the magnetic properties under bending. Float on and transfer provides an alternative route to prepare freestanding and wrinkle-free CFO membrane films. The advances and challenges presented in this work are expected to help increase the capabilities to grow different oxide compositions and heterostructures of freestanding films and their range of functional properties.
制备和操控具有晶体结构且可弯曲的功能性复合氧化物薄膜,一直是众多应用领域,尤其是柔性电子领域长期存在的问题。在此,我们研究了通过使用化学沉积技术的SrAlO(SAO)牺牲层方法制备磁性晶体CoFeO(CFO)薄膜的可行性。对SAO表面和SAO/CFO界面性质进行细致的化学和结构研究,使我们能够确定在空气暴露后形成了非晶态SAO覆盖层和碳酸盐,这决定了后续CFO薄膜生长的晶体质量。SAO薄膜在800℃下进行真空退火可促进表面碳酸盐的消除以及SAO表面结晶度的重建。在暴露于空气中的SAO上于250℃进行CFO薄膜的异位原子层沉积,提供了避免高温生长的机会,同时可获得能够成功转移到聚合物支撑体上并在弯曲状态下保持磁性的多晶CFO薄膜。漂浮和转移提供了一种制备独立且无褶皱的CFO薄膜的替代途径。预计这项工作中提出的进展和挑战将有助于提高生长不同氧化物组成和独立薄膜异质结构的能力及其功能特性范围。