Suppr超能文献

金融市场中社交媒体使用的多重分形分析

Multifractal analysis of social media use in financial markets.

作者信息

Oh Gabjin

机构信息

College of Business, Chosun University, Gwangju, 61452 South Korea.

出版信息

J Korean Phys Soc. 2022;80(6):526-532. doi: 10.1007/s40042-022-00448-4. Epub 2022 Feb 25.

Abstract

We analyze the nonlinear properties of social media activity(SMA) using the multifractal detrended fluctuation analysis (MF-DFA) method. Social media data related to the stock market are gathered from social media platforms. Using data on over 2000 firms in the Korean stock market for 2018-2020, we study social media activity and its differences to evaluate associated nonlinear and statistical properties. We find that the cumulative distribution function of SMA follows a stretched exponential distribution with . The Hurst exponent of SMA for three datasets (2018, 2019, 2020 year) is larger than 0.9, whereas the Hurst exponents of shuffled time series have values of approximately 0.5. In particular, we find a multifractal structure in both SMA and SMA difference results irrespective of the period and degree of multifractality defined as , which reaches a maximum value during the COVID-19 pandemic as a financial crisis.

摘要

我们使用多重分形去趋势波动分析(MF-DFA)方法分析社交媒体活动(SMA)的非线性特性。与股票市场相关的社交媒体数据是从社交媒体平台收集的。利用2018 - 2020年韩国股票市场上2000多家公司的数据,我们研究社交媒体活动及其差异,以评估相关的非线性和统计特性。我们发现SMA的累积分布函数遵循拉伸指数分布,参数为 。三个数据集(2018年、2019年、2020年)的SMA的赫斯特指数大于0.9,而打乱时间序列的赫斯特指数约为0.5。特别是,我们在SMA和SMA差异结果中都发现了多重分形结构,无论多重分形性的时期和程度如何定义,其定义为 ,在作为金融危机的新冠疫情期间达到最大值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba99/8876082/710b4c724cb7/40042_2022_448_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验