Saâdaoui Foued
Department of Statistics, Faculty of Sciences, King Abdulaziz University, P.O BOX 80203, Jeddah 21589, Saudi Arabia.
Chaos Solitons Fractals. 2023 May;170:113372. doi: 10.1016/j.chaos.2023.113372. Epub 2023 Mar 21.
This article proposes a new paradigm of asymmetric multifractality in financial time series, where the scaling feature varies over two adjacent intervals. The proposed approach first locates a change-point and then performs a multifractal detrended fluctuation analysis (MF-DFA) on each interval. The study investigates the impact of the COVID-19 pandemic on asymmetric multifractal scaling by analyzing financial indices of the G3+1 nations, including the world's four largest economies, from January 2018 to November 2021. The results show common periods of local scaling with increasing multifractality after a change-point at the beginning of 2020 for the US, Japanese, and Eurozone markets. The study also identifies a significant transition in the Chinese market from a turbulent multifractal state to a stable monofractal state. Overall, this new approach provides valuable insights into the characteristics of financial time series and their response to extreme events.
本文提出了金融时间序列中不对称多重分形的新范式,其中标度特征在两个相邻区间内变化。所提出的方法首先定位一个变化点,然后在每个区间上进行多重分形去趋势波动分析(MF-DFA)。该研究通过分析2018年1月至2021年11月期间G3+1国家(包括世界四大经济体)的金融指数,研究了新冠疫情对不对称多重分形标度的影响。结果表明,美国、日本和欧元区市场在2020年初出现变化点后,存在局部标度的共同时期,多重分形性增加。该研究还发现中国市场从动荡的多重分形状态向稳定的单分形状态发生了显著转变。总体而言,这种新方法为金融时间序列的特征及其对极端事件的响应提供了有价值的见解。