Suppr超能文献

基于机器学习的住院床位需求预测。

Machine learning based forecast for the prediction of inpatient bed demand.

机构信息

Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.

Geisinger Health System, Danville, PA, USA.

出版信息

BMC Med Inform Decis Mak. 2022 Mar 2;22(1):55. doi: 10.1186/s12911-022-01787-9.

Abstract

BACKGROUND

Overcrowding is a serious problem that impacts the ability to provide optimal level of care in a timely manner. High patient volume is known to increase the boarding time at the emergency department (ED), as well as at post-anesthesia care unit (PACU). Furthermore, the same high volume increases inpatient bed transfer times, which causes delays in elective surgeries, increases the probability of near misses, patient safety incidents, and adverse events.

OBJECTIVE

The purpose of this study is to develop a Machine Learning (ML) based strategy to predict weekly forecasts of the inpatient bed demand in order to assist the resource planning for the ED and PACU, resulting in a more efficient utilization.

METHODS

The data utilized included all adult inpatient encounters at Geisinger Medical Center (GMC) for the last 5 years. The variables considered were class of inpatient encounter, observation, or surgical overnight recovery (SORU) at the time of their discharge. The ML based strategy is built using the K-means clustering method and the Support Vector Machine Regression technique (K-SVR).

RESULTS

The performance obtained by the K-SVR strategy in the retrospective cohort amounts to a mean absolute percentage error (MAPE) that ranges between 0.49 and 4.10% based on the test period. Additionally, results present a reduced variability, which translates into more stable forecasting results.

CONCLUSIONS

The results from this study demonstrate the capacity of ML techniques to forecast inpatient bed demand, particularly using K-SVR. It is expected that the implementation of this model in the workflow of bed capacity management will create efficiencies, which will translate in a more reliable, inexpensive and timely care for patients.

摘要

背景

过度拥挤是一个严重的问题,会影响及时提供最佳护理水平的能力。已知高患者量会增加急诊科(ED)和麻醉后护理单元(PACU)的住院时间。此外,同样的高容量增加了住院床位转移时间,这导致择期手术延迟,增加了险些发生差错、患者安全事件和不良事件的概率。

目的

本研究的目的是开发一种基于机器学习(ML)的策略来预测每周住院床位需求预测,以协助 ED 和 PACU 的资源规划,从而更有效地利用资源。

方法

所使用的数据包括过去 5 年格齐尔医疗中心(GMC)所有成年住院患者的就诊记录。考虑的变量包括就诊时的住院患者就诊类别、观察或手术过夜恢复(SORU)。基于 K-means 聚类方法和支持向量机回归技术(K-SVR)构建基于 ML 的策略。

结果

在回顾性队列中,K-SVR 策略的性能表现为测试期内平均绝对百分比误差(MAPE)在 0.49%至 4.10%之间。此外,结果还呈现出较小的变异性,这转化为更稳定的预测结果。

结论

这项研究的结果表明,ML 技术有能力预测住院床位需求,特别是使用 K-SVR。预计该模型在床位容量管理工作流程中的实施将提高效率,从而为患者提供更可靠、经济实惠和及时的护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f0a/8892809/d45472817437/12911_2022_1787_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验