Suppr超能文献

自然脑电图数据中的微状态检测:基于情感数据库的地形聚类策略系统比较

Microstate Detection in Naturalistic Electroencephalography Data: A Systematic Comparison of Topographical Clustering Strategies on an Emotional Database.

作者信息

Hu Wanrou, Zhang Zhiguo, Zhang Li, Huang Gan, Li Linling, Liang Zhen

机构信息

School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.

Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China.

出版信息

Front Neurosci. 2022 Feb 14;16:812624. doi: 10.3389/fnins.2022.812624. eCollection 2022.

Abstract

Electroencephalography (EEG) microstate analysis is a powerful tool to study the spatial and temporal dynamics of human brain activity, through analyzing the quasi-stable states in EEG signals. However, current studies mainly focus on rest-state EEG recordings, microstate analysis for the recording of EEG signals during naturalistic tasks is limited. It remains an open question whether current topographical clustering strategies for rest-state microstate analysis could be directly applied to task-state EEG data under the natural and dynamic conditions and whether stable and reliable results could still be achieved. It is necessary to answer the question and explore whether the topographical clustering strategies would affect the performance of microstate detection in task-state EEG microstate analysis. If it exists differences in microstate detection performance when different topographical clustering strategies are adopted, then we want to know how the alternations of the topographical clustering strategies are associated with the naturalistic task. To answer these questions, we work on a public emotion database using naturalistic and dynamic music videos as the stimulation to evaluate the effects of different topographical clustering strategies for task-state EEG microstate analysis. The performance results are systematically examined and compared in terms of microstate quality, task efficacy, and computational efficiency, and the impact of topographical clustering strategies on microstate analysis for naturalistic task data is discussed. The results reveal that a single-trial-based bottom-up topographical clustering strategy (bottom-up) achieves comparable results with the task-driven-based top-down topographical clustering (top-down). It suggests that, when task information is unknown, the single-trial-based topographical clustering could be a good choice for microstate analysis and neural activity study on naturalistic EEG data.

摘要

脑电图(EEG)微状态分析是一种通过分析EEG信号中的准稳态来研究人类大脑活动时空动态的强大工具。然而,目前的研究主要集中在静息态EEG记录上,对自然任务期间EEG信号记录的微状态分析有限。当前用于静息态微状态分析的地形聚类策略是否能直接应用于自然和动态条件下的任务态EEG数据,以及是否仍能获得稳定可靠的结果,这仍然是一个悬而未决的问题。有必要回答这个问题,并探索地形聚类策略是否会影响任务态EEG微状态分析中的微状态检测性能。如果采用不同的地形聚类策略时微状态检测性能存在差异,那么我们想知道地形聚类策略的变化与自然任务是如何关联的。为了回答这些问题,我们使用自然和动态音乐视频作为刺激,在一个公共情绪数据库上进行研究,以评估不同地形聚类策略对任务态EEG微状态分析的影响。从微状态质量、任务效能和计算效率方面系统地检查和比较了性能结果,并讨论了地形聚类策略对自然任务数据微状态分析的影响。结果表明,基于单次试验的自下而上地形聚类策略(bottom-up)与基于任务驱动的自上而下地形聚类(top-down)取得了可比的结果。这表明,当任务信息未知时,基于单次试验的地形聚类可能是对自然EEG数据进行微状态分析和神经活动研究的一个不错选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf13/8882921/38d8e4382aa7/fnins-16-812624-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验