Suppr超能文献

神经形态工程需要闭环基准测试。

Neuromorphic Engineering Needs Closed-Loop Benchmarks.

作者信息

Milde Moritz B, Afshar Saeed, Xu Ying, Marcireau Alexandre, Joubert Damien, Ramesh Bharath, Bethi Yeshwanth, Ralph Nicholas O, El Arja Sami, Dennler Nik, van Schaik André, Cohen Gregory

机构信息

International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Penrith, NSW, Australia.

出版信息

Front Neurosci. 2022 Feb 14;16:813555. doi: 10.3389/fnins.2022.813555. eCollection 2022.

Abstract

Neuromorphic engineering aims to build (autonomous) systems by mimicking biological systems. It is motivated by the observation that biological organisms-from algae to primates-excel in sensing their environment, reacting promptly to their perils and opportunities. Furthermore, they do so more resiliently than our most advanced machines, at a fraction of the power consumption. It follows that the performance of neuromorphic systems should be evaluated in terms of real-time operation, power consumption, and resiliency to real-world perturbations and noise using task-relevant evaluation metrics. Yet, following in the footsteps of conventional machine learning, most neuromorphic benchmarks rely on recorded datasets that foster sensing accuracy as the primary measure for performance. Sensing accuracy is but an arbitrary proxy for the actual system's goal-taking a good decision in a timely manner. Moreover, static datasets hinder our ability to study and compare closed-loop sensing and control strategies that are central to survival for biological organisms. This article makes the case for a renewed focus on closed-loop benchmarks involving real-world tasks. Such benchmarks will be crucial in developing and progressing neuromorphic Intelligence. The shift towards dynamic real-world benchmarking tasks should usher in richer, more resilient, and robust artificially intelligent systems in the future.

摘要

神经形态工程旨在通过模仿生物系统来构建(自主)系统。其灵感来源于这样的观察:从藻类到灵长类动物的生物有机体在感知环境、对危险和机遇迅速做出反应方面表现出色。此外,它们在这方面比我们最先进的机器更具弹性,且功耗仅为其几分之一。因此,神经形态系统的性能应该根据实时操作、功耗以及使用与任务相关的评估指标对现实世界扰动和噪声的弹性来评估。然而,大多数神经形态基准测试沿袭传统机器学习的路径,依赖记录的数据集,将传感精度作为性能的主要衡量标准。传感精度不过是实际系统目标的一个随意替代指标——即及时做出正确决策。此外,静态数据集阻碍了我们研究和比较对生物有机体生存至关重要的闭环传感和控制策略的能力。本文主张重新关注涉及现实世界任务的闭环基准测试。此类基准测试对于开发和推进神经形态智能至关重要。向动态现实世界基准测试任务的转变有望在未来带来更丰富、更具弹性且更强大的人工智能系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6337/8884247/4cb98a1a8b83/fnins-16-813555-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验