Bandaranayake Savini, Patnaik Ananya, Hruska Emily, Zhu Quansong, Das Subhajit, Baker L Robert
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):41616-41625. doi: 10.1021/acsami.4c03941. Epub 2024 Jul 25.
CuO, CuO, and mixed phase CuO/CuO represent promising candidates for photoelectrochemical H evolution due to their strong visible light absorption, earth-abundance, and chemical stability. However, the photoelectrochemical efficiency in these materials remains far below the theoretical limit, largely due to poorly understood surface electron dynamics. These dynamics depend on defect states, such as Cu atom vacancies and phase boundaries, which control electron trapping, charge carrier separation, and recombination. In this work, we study the photoinduced electron and hole dynamics at the surface of various Cu oxides using ultrafast extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. In CuO we find that photoexcitation occurs as electron promotion from primarily Cu 3d valence band to Cu 4s conduction band states compared to O 2p valence band to Cu 4s conduction band states in CuO. In catalysts with a significant concentration of Cu vacancies, we observe fast electron trapping to the Cu 3d defect band occurring in less than 100 fs. In contrast, photoexcited electrons in phase pure CuO do not trap to midgap states; rather these electrons form small polarons within approximately 500 fs. Photoelectrochemical measurements of these catalysts show that Cu vacancy-mediated electron trapping correlates with a significant loss of photocurrent. Together, these results provide a detailed picture of the defect states and associated ultrafast carrier dynamics that govern the photocatalytic efficiency in widely studied CuO and CuO photocatalysts.
CuO、CuO 以及混合相 CuO/CuO 因其强烈的可见光吸收、在地壳中储量丰富以及化学稳定性,成为光电化学析氢的潜在候选材料。然而,这些材料的光电化学效率仍远低于理论极限,这主要是由于对其表面电子动力学了解不足。这些动力学取决于缺陷态,如铜原子空位和相界,它们控制着电子俘获、电荷载流子分离和复合。在这项工作中,我们使用超快极紫外反射吸收(XUV-RA)光谱研究了各种氧化铜表面的光致电子和空穴动力学。在 CuO 中,我们发现光激发是电子从主要的 Cu 3d 价带跃迁到 Cu 4s 导带态,而在 CuO 中是从 O 2p 价带跃迁到 Cu 4s 导带态。在具有大量铜空位的催化剂中,我们观察到在不到 100 飞秒的时间内,电子快速俘获到 Cu 3d 缺陷带。相比之下,纯相 CuO 中的光激发电子不会俘获到带隙中间态;相反,这些电子在大约 500 飞秒内形成小极化子。对这些催化剂的光电化学测量表明,铜空位介导的电子俘获与光电流的显著损失相关。总之,这些结果提供了缺陷态以及相关超快载流子动力学的详细情况,这些动力学决定了广泛研究的 CuO 和 CuO 光催化剂的光催化效率。