Suppr超能文献

用于智能感知和人工智能感知的电辅助包芯摩擦纳米发电机织物

Electroassisted Core-Spun Triboelectric Nanogenerator Fabrics for IntelliSense and Artificial Intelligence Perception.

作者信息

Ye Chao, Yang Shuo, Ren Jing, Dong Shaojun, Cao Leitao, Pei Ying, Ling Shengjie

机构信息

School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.

School of Materials Science and Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China.

出版信息

ACS Nano. 2022 Mar 22;16(3):4415-4425. doi: 10.1021/acsnano.1c10680. Epub 2022 Mar 3.

Abstract

IntelliSense fabrics that can sense transient mechanical stimuli are widely anticipated in flexible and wearable electronics. However, most IntelliSense fabrics developed so far are only sensitive to quasi-static forces, such as stretching, bending, or twisting. In this work, a sheath-core triboelectric nanogenerator (SC-TENG) yarn was developed via a rational design, electroassisted core spinning technique, that consisted of a rough nanoscale dielectric surface and mechanically strong and electrically conductive core yarns. The resulting system was used to sense and distinguish the instantaneous mechanical stimuli generated by different materials. To further improve the sensing accuracy, a machine learning model, based on a classification coding and recurrent neural network, was built to predict the type of contact materials from the peak profiles of output voltages. With these experimental and algorithmic optimizations, we finally used SC-TENG yarn to identify the type of materials in real-time. Moreover, by applying Internet of Things techniques, we investigated that SC-TENG yarn could be integrated into an IntelliSense system to recognize and control various electronic and electrical systems, demonstrating promising applications in wearable energy supply, IntelliSense fabrics, and human-machine interactions.

摘要

能够感知瞬态机械刺激的智能织物在柔性和可穿戴电子设备中备受期待。然而,迄今为止开发的大多数智能织物仅对准静态力敏感,如拉伸、弯曲或扭转。在这项工作中,通过合理设计的电辅助芯纺技术开发了一种鞘芯摩擦纳米发电机(SC-TENG)纱线,它由粗糙的纳米级介电表面和机械强度高且导电的芯纱组成。所得系统用于感知和区分不同材料产生的瞬时机械刺激。为了进一步提高传感精度,基于分类编码和递归神经网络构建了一个机器学习模型,以根据输出电压的峰值轮廓预测接触材料的类型。通过这些实验和算法优化,我们最终使用SC-TENG纱线实时识别材料类型。此外,通过应用物联网技术,我们研究发现SC-TENG纱线可以集成到智能系统中,以识别和控制各种电子和电气系统,在可穿戴能源供应、智能织物和人机交互方面展示出了广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验