Suppr超能文献

通过纳米捻纺制备用于高性能能量收集的核壳纳米纤维纱线——纳米纤维织物的可扩展制造

Scalable Fabrication of Core-Sheath Nanofiber Yarns via NanoTwist Spinning for High-Performance Energy-Harvesting -Nanofiber Fabrics.

作者信息

Jayadevan Syamini, Aliyana Akshaya Kumar, Stylios George K

机构信息

Smart Wearable Electronics Group (SWEG), Research Institute for Flexible Materials, School of Textiles and Design, Heriot-Watt University, Galashiels TD1 3HF, U.K.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 2;17(26):37936-37950. doi: 10.1021/acsami.5c04482. Epub 2025 Jun 17.

Abstract

The fabrication of durable and scalable nanofiber fabrics (NFs) remains a critical challenge, limiting their practical applications in wearable electronics, smart textiles, biosensing, and energy harvesting systems. Recent advances in self-powered wearable textiles have demonstrated the potential of converting biomechanical motion into electricity, paving the way for battery-free next-generation SMART textiles. However, achieving a balance among flexibility, durability, high output performance, and wearability remains a major hurdle for real-world adoption. In this study, we introduce NanoTwist Spinning, an integrated nanospinning and yarn-twisting system designed to fabricate core-sheath nanofiber yarns (CSNYs) with high mechanical resilience and electrical conductivity. These yarns feature a precisely twisted nanofiber sheath wrapped around a conductive silver core, enabling large-scale processing through standard knitting machines to produce high-performance electronic-NFs (-NFs). By optimizing fabrication parameters and utilizing polycaprolactone (PCL) and poly(vinylidene fluoride--hexafluoropropylene) (PVDF-HFP) polymers, we achieved uniform, stable CSNYs with an optimized nanofiber wrapping rate of 38.21%. The resulting knitted NFs exhibited exceptional mechanical properties, including 83% compressive resilience, a breaking force of 350.5 N, a tensile strength of 17.53 MPa, and an elongation of 261.8%, ensuring superior durability, wearability, and comfort. To demonstrate real-world feasibility, the fabricated PCL/PVDF-HFP NF-based triboelectric nanogenerator (TENG) achieved an impressive electrical output of 100 V and 8 μA under real-time conditions, validating its potential for energy-harvesting applications. This work marks a significant breakthrough in scalable NYs and NFs production, offering a transformative pathway for the smart textile industry and opening new frontiers in sustainable, self-powered E-Textiles.

摘要

制造耐用且可扩展的纳米纤维织物(NFs)仍然是一项严峻挑战,限制了它们在可穿戴电子设备、智能纺织品、生物传感和能量收集系统中的实际应用。自供电可穿戴纺织品的最新进展已证明将生物力学运动转化为电能的潜力,为无电池的下一代智能纺织品铺平了道路。然而,要在柔韧性、耐用性、高输出性能和可穿戴性之间取得平衡,仍然是实际应用中的一个主要障碍。在本研究中,我们引入了纳米捻纺技术,这是一种集成的纳米纺丝和纱线加捻系统,旨在制造具有高机械弹性和导电性的核壳纳米纤维纱线(CSNYs)。这些纱线的特点是在导电银芯周围包裹着精确捻合的纳米纤维鞘,能够通过标准针织机进行大规模加工,以生产高性能的电子纳米纤维(e-NFs)。通过优化制造参数并使用聚己内酯(PCL)和聚(偏二氟乙烯-六氟丙烯)(PVDF-HFP)聚合物,我们获得了均匀、稳定的CSNYs,其优化的纳米纤维缠绕率为38.21%。所得的针织纳米纤维表现出优异的机械性能,包括83%的压缩弹性、350.5 N的断裂力、17.53 MPa的拉伸强度和261.8%的伸长率,确保了卓越的耐用性、可穿戴性和舒适性。为了证明实际可行性,所制造的基于PCL/PVDF-HFP纳米纤维的摩擦纳米发电机(TENG)在实时条件下实现了100 V和8 μA的令人印象深刻的电输出,验证了其在能量收集应用中的潜力。这项工作标志着可扩展的纳米纱线和纳米纤维生产取得了重大突破,为智能纺织行业提供了一条变革性途径,并为可持续、自供电的电子纺织品开辟了新的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c563/12232280/aca2a050b5a1/am5c04482_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验