Suppr超能文献

无校准似然比设计在 I/II 期临床试验中的应用。

CFO: Calibration-free odds design for phase I/II clinical trials.

机构信息

Department of Statistics and Actuarial Science, 25809The University of Hong Kong, Pokfulam Road, Hong Kong.

出版信息

Stat Methods Med Res. 2022 Jun;31(6):1051-1066. doi: 10.1177/09622802221079353. Epub 2022 Mar 3.

Abstract

Recent revolution in oncology treatment has witnessed emergence and fast development of the targeted therapy and immunotherapy. In contrast to traditional cytotoxic agents, these types of treatment tend to be more tolerable and thus efficacy is of more concern. As a result, seamless phase I/II trials have gained enormous popularity, which aim to identify the optimal biological dose (OBD) rather than the maximum tolerated dose (MTD). To enhance the accuracy and robustness for identification of OBD, we develop a calibration-free odds (CFO) design. For toxicity monitoring, the CFO design casts the current dose in competition with its two neighboring doses to obtain an admissible set. For efficacy monitoring, CFO selects the dose that has the largest posterior probability to achieve the highest efficacy under the Bayesian paradigm. In contrast to most of the existing designs, the prominent merit of CFO is that its main dose-finding component is model-free and calibration-free, which can greatly ease the burden on artificial input of design parameters and thus enhance the robustness and objectivity of the design. Extensive simulation studies demonstrate that the CFO design strikes a good balance between efficiency and safety for MTD identification under phase I trials, and yields comparable or sometimes slightly better performance for OBD identification than the competing methods under phase I/II trials.

摘要

近年来,肿瘤治疗领域发生了革命性变化,靶向治疗和免疫疗法应运而生并迅速发展。与传统的细胞毒性药物相比,这些治疗方法的耐受性通常更好,因此疗效更受关注。因此,无缝的 I/II 期试验变得非常流行,其目的是确定最佳生物学剂量(OBD)而不是最大耐受剂量(MTD)。为了提高确定 OBD 的准确性和稳健性,我们开发了一种无校准优势(CFO)设计。对于毒性监测,CFO 设计将当前剂量与两个相邻剂量进行竞争,以获得可接受的剂量范围。对于疗效监测,CFO 选择具有最大后验概率的剂量,以在贝叶斯范式下实现最高疗效。与大多数现有设计相比,CFO 的突出优点是其主要的剂量探索组件是无模型和无校准的,这可以大大减轻设计参数人工输入的负担,从而提高设计的稳健性和客观性。广泛的模拟研究表明,CFO 设计在 I 期试验中在 MTD 识别方面在效率和安全性之间取得了很好的平衡,并且在 I/II 期试验中,与竞争方法相比,在 OBD 识别方面具有可比甚至有时稍好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa70/9527856/7331ad4682ce/10.1177_09622802221079353-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验