Suppr超能文献

双菲并苯:模块化合成、可定制空腔尺寸和多样骨架。

Biphen[]arenes: Modular Synthesis, Customizable Cavity Sizes, and Diverse Skeletons.

机构信息

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.

出版信息

Acc Chem Res. 2022 Mar 15;55(6):916-929. doi: 10.1021/acs.accounts.2c00043. Epub 2022 Mar 3.

Abstract

Macrocyclic compounds are fundamental tools in supramolecular chemistry and have been widely used in molecular recognition, biomedicine, and materials science. The construction of new macrocycles with distinctive structures and properties would unleash new opportunities for supramolecular chemistry. Traditionally popular macrocycles, e.g., cyclodextrins, calixarenes, cucurbiturils, and pillararenes, possess specific cavities that are usually less than 10 Å in diameter; they are normally suitable for accommodating small- or medium-sized guests but cannot engulf giant molecules or structures. Furthermore, the skeletons of traditional macrocycles are impoverished and incapable of being changed; functional substituents can be introduced only on their portals.Thus, it is very challenging to construct macrocycles with customizable cavity sizes and/or diverse backbones. We have developed a versatile and modular strategy for synthesizing macrocycles, namely, biphen[]arenes ( = 3-8), based on the structure- or function-oriented replacement of reaction modules, functional modules, and linking modules. First, two reaction modules and one functional module are connected by Suzuki-Miyaura coupling to obtain a monomer having two reaction sites. Then Friedel-Crafts alkylation between the monomer and an aldehyde (linking module) serves to afford diversely functionalized macrocycles. Moreover, large macrocycles can be achieved by using long and rigid oligo(para-phenylene) monomers. Because of the modular synthesis and plentiful molecular supplies, the biphen[]arenes showed interesting recognition properties for both small molecules and large polypeptides. Customizable functional backbones and binding sites endowed this new family of macrocycles with peculiar self-assembly properties and potential applications in gas chromatography, pollutant capture, and physisorptive separation. Biphen[]arenes would be a promising family of workhorses in supramolecular chemistry.In this Account, we summarize our recent work on the chemistry of biphen[]arenes. We introduce their design and modular synthesis, including systematic exploration for reaction modules, customizable cavity sizes, skeleton functionalization, pre- and postmodification, and molecular cages. Thereafter, we discuss their host-guest properties, involving the binding for small guests by cationic/anionic/neutral biphen[]arenes, as well as the complexation of polypeptides by large quaterphen[]arenes. In addition, we outline the self-assembly and potential applications of this new family of macrocycles. Finally, we forecast their further development. The chemistry of biphen[]arenes is still in its infancy. Continued exploration will not only further expand the supramolecular toolbox but also open new avenues for the use of biphen[]arenes in the fields of biology, pharmaceutical science, and materials science.

摘要

大环化合物是超分子化学的基本工具,已广泛应用于分子识别、生物医药和材料科学领域。构建具有独特结构和性质的新大环化合物将为超分子化学带来新的机遇。传统上受欢迎的大环化合物,如环糊精、杯芳烃、瓜环和柱芳烃,具有通常小于 10 Å 的特定空腔;它们通常适合容纳小或中等大小的客体,但不能容纳巨大的分子或结构。此外,传统大环化合物的骨架贫乏,无法改变;只能在其端口引入功能取代基。因此,构建具有可定制空腔大小和/或不同骨架的大环化合物极具挑战性。我们开发了一种用于合成大环化合物的通用和模块化策略,即双[]芳烃(= 3-8),基于结构或功能导向的反应模块、功能模块和连接模块的替换。首先,通过 Suzuki-Miyaura 偶联将两个反应模块和一个功能模块连接起来,得到具有两个反应位点的单体。然后,单体与醛(连接模块)之间的 Friedel-Crafts 烷基化反应得到各种功能化的大环化合物。此外,使用长而刚性的聚对亚苯基)单体可以得到大环。由于模块化合成和丰富的分子供应,双[]芳烃对小分子和大多肽都表现出有趣的识别性能。可定制的功能骨架和结合位点赋予这个新的大环化合物家族独特的自组装性质,并在气相色谱、污染物捕获和物理吸附分离等方面具有潜在应用。双[]芳烃将成为超分子化学中很有前途的一类主体化合物。

在本报告中,我们总结了我们最近在双[]芳烃化学方面的工作。我们介绍了它们的设计和模块化合成,包括对反应模块、可定制空腔大小、骨架功能化、预修饰和后修饰以及分子笼的系统探索。然后,我们讨论了它们的主体客体性质,包括阳离子/阴离子/中性双[]芳烃对小分子的结合,以及大醌芳烃对多肽的配合。此外,我们概述了这个新大环化合物家族的自组装和潜在应用。最后,我们预测了它们的进一步发展。双[]芳烃的化学仍处于起步阶段。进一步的探索不仅将进一步扩展超分子工具箱,而且还将为双[]芳烃在生物学、药物科学和材料科学领域的应用开辟新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验