State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China.
Sci Adv. 2024 Jul 26;10(30):eadp4872. doi: 10.1126/sciadv.adp4872.
Amid rising antibiotic resistance, the quest for advanced antibacterial agents to surpass microbial adaptation is paramount. This study introduces Pyrgos[]cages ( = 1 to 4), pioneering multidecker cationic covalent organic cages engineered to combat drug-resistant bacteria via a dual-targeting approach. Synthesized through successive photocatalytic bromination and cage-forming reactions, these architectures stand out for their dense positive charge distribution, exceptional stability, and substantial rigidity. Pyrgos[]cages exhibit potent bactericidal activity by disrupting bacterial membrane potential and binding to DNA. Notably, these structures show unparalleled success in eradicating both extracellular and intracellular drug-resistant pathogens in diverse infection scenarios, with antibacterial efficiency markedly increasing over 100-fold as the decker number rises from 1 to 3. This study provides an advance in antibacterial tactics and underscores the transformative potential of covalent organic cages in devising enduring countermeasures against antibiotic-resistant microbial threats.
在抗生素耐药性不断上升的情况下,寻求能够超越微生物适应性的先进抗菌剂至关重要。本研究介绍了 Pyrgos[]笼(= 1 至 4),这是一种开创性的多夹层阳离子共价有机笼,通过双重靶向方法来对抗耐药菌。通过连续的光催化溴化和笼形成反应合成,这些结构的特点是其密集的正电荷分布、出色的稳定性和相当大的刚性。 Pyrgos[]笼通过破坏细菌膜电位并与 DNA 结合来发挥强大的杀菌活性。值得注意的是,这些结构在消除各种感染情况下的细胞外和细胞内耐药病原体方面取得了无与伦比的成功,随着夹层数量从 1 增加到 3,抗菌效率显著提高了 100 多倍。本研究为抗菌策略提供了新的思路,并强调了共价有机笼在设计针对抗生素耐药性微生物威胁的持久对策方面的变革潜力。