Suppr超能文献

基于遗传电路实现的用于分子通信的卷积编解码器

Convolutional Codec Implemented by Genetic Circuits for Molecular Communication.

作者信息

Yu Jingxiang, Li Hui

出版信息

IEEE Trans Nanobioscience. 2023 Jan;22(1):78-91. doi: 10.1109/TNB.2022.3156621. Epub 2022 Dec 29.

Abstract

Molecular communication (MC), which transmits information through molecules, has emerged as a promising technique to enable communication links between nanomachines. To establish information transmission using molecules, synthetic biology through genetic circuits techniques can be utilized to construct biological components. Recent efforts on genetic circuits have produced many exciting MC systems and generated substantial insights. With basic gene regulatory modules and motifs, researchers are now constructing artificial networks with novel functions that will serve as building blocks in the MC system. In this paper, we investigate the design of genetic circuits to implement the convolutional codec in a diffusion-based MC channel with the concentration shift keying (CSK) transmission scheme. At the receiver, a majority-logic decoder is applied to decode the received symbols. These functions are completely realized in the field of biochemistry through the activation and inhibition of genes and biochemical reactions, rather than through classical electrical circuits. Biochemical simulations are used to verify the feasibility of the system and analyze the impairments caused by diffusion noise and chemical reaction noise of genetic circuits.

摘要

分子通信(MC)通过分子来传输信息,已成为一种很有前景的技术,可实现纳米机器之间的通信链路。为了利用分子建立信息传输,可以利用基于遗传电路技术的合成生物学来构建生物组件。最近在遗传电路方面的努力产生了许多令人兴奋的分子通信系统,并带来了深刻的见解。借助基本的基因调控模块和基序,研究人员目前正在构建具有新颖功能的人工网络,这些网络将成为分子通信系统的构建模块。在本文中,我们研究了遗传电路的设计,以便在基于扩散的分子通信信道中采用浓度移键控(CSK)传输方案来实现卷积编解码器。在接收器端,应用多数逻辑解码器对接收到的符号进行解码。这些功能完全是在生物化学领域通过基因的激活和抑制以及生化反应来实现的,而不是通过传统的电路。生化模拟用于验证系统的可行性,并分析遗传电路的扩散噪声和化学反应噪声所造成的损伤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验