Department of Mathematics, University of California, Riverside, Riverside, CA 92521, USA.
Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
Math Biosci Eng. 2022 Jan 7;19(3):2592-2615. doi: 10.3934/mbe.2022119.
Neural stem cells (NSCs) offer a potential solution to treating brain tumors. This is because NSCs can circumvent the blood-brain barrier and migrate to areas of damage in the central nervous system, including tumors, stroke, and wound injuries. However, for successful clinical application of NSC treatment, a sufficient number of viable cells must reach the diseased or damaged area(s) in the brain, and evidence suggests that it may be affected by the paths the NSCs take through the brain, as well as the locations of tumors. To study the NSC migration in brain, we develop a mathematical model of therapeutic NSC migration towards brain tumor, that provides a low cost platform to investigate NSC treatment efficacy. Our model is an extension of the model developed in Rockne et al. (PLoS ONE 13, e0199967, 2018) that considers NSC migration in non-tumor bearing naive mouse brain. Here we modify the model in Rockne et al. in three ways: (i) we consider three-dimensional mouse brain geometry, (ii) we add chemotaxis to model the tumor-tropic nature of NSCs into tumor sites, and (iii) we model stochasticity of migration speed and chemosensitivity. The proposed model is used to study migration patterns of NSCs to sites of tumors for different injection strategies, in particular, intranasal and intracerebral delivery. We observe that intracerebral injection results in more NSCs arriving at the tumor site(s), but the relative fraction of NSCs depends on the location of injection relative to the target site(s). On the other hand, intranasal injection results in fewer NSCs at the tumor site, but yields a more even distribution of NSCs within and around the target tumor site(s).
神经干细胞 (NSC) 为治疗脑肿瘤提供了一种潜在的解决方案。这是因为 NSC 可以绕过血脑屏障并迁移到中枢神经系统的损伤区域,包括肿瘤、中风和创伤损伤。然而,为了成功将 NSC 治疗应用于临床,必须有足够数量的存活细胞到达大脑中的患病或受损区域,有证据表明,这可能受到 NSC 穿过大脑的路径以及肿瘤位置的影响。为了研究 NSC 在大脑中的迁移,我们开发了一个治疗性 NSC 向脑肿瘤迁移的数学模型,该模型为研究 NSC 治疗效果提供了一个低成本的平台。我们的模型是对 Rockne 等人开发的模型的扩展 (PLoS ONE 13, e0199967, 2018),该模型考虑了非肿瘤携带的未受影响的小鼠大脑中的 NSC 迁移。在这里,我们以三种方式修改了 Rockne 等人的模型:(i) 我们考虑了三维小鼠大脑几何形状,(ii) 我们添加趋化性来模拟 NSC 向肿瘤部位迁移的肿瘤趋向性,以及 (iii) 我们对迁移速度和趋化敏感性的随机性进行建模。所提出的模型用于研究不同注射策略下 NSC 向肿瘤部位的迁移模式,特别是鼻内和脑内给药。我们观察到脑内注射导致更多的 NSC 到达肿瘤部位,但 NSC 的相对分数取决于注射相对于目标部位的位置。另一方面,鼻内注射导致肿瘤部位的 NSC 较少,但在目标肿瘤部位及其周围产生更均匀的 NSC 分布。