Suppr超能文献

胶质母细胞瘤中联合自噬、凋亡和坏死相关基因特征的预后价值及其免疫相关性。

Prognostic value and immune relevancy of a combined autophagy-, apoptosis- and necrosis-related gene signature in glioblastoma.

机构信息

Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

出版信息

BMC Cancer. 2022 Mar 3;22(1):233. doi: 10.1186/s12885-022-09328-3.

Abstract

BACKGROUND

Glioblastoma (GBM) is considered the most malignant and devastating intracranial tumor without effective treatment. Autophagy, apoptosis, and necrosis, three classically known cell death pathways, can provide novel clinical and immunological insights, which may assist in designing personalized therapeutics. In this study, we developed and validated an effective signature based on autophagy-, apoptosis- and necrosis-related genes for prognostic implications in GBM patients.

METHODS

Variations in the expression of genes involved in autophagy, apoptosis and necrosis were explored in 518 GBM patients from The Cancer Genome Atlas (TCGA) database. Univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate Cox analysis were performed to construct a combined prognostic signature. Kaplan-Meier survival, receiver-operating characteristic (ROC) curves and Cox regression analyses based on overall survival (OS) and progression-free survival (PFS) were conducted to estimate the independent prognostic performance of the gene signature. The Chinese Glioma Genome Atlas (CGGA) dataset was used for external validation. Finally, we investigated the differences in the immune microenvironment between different prognostic groups and predicted potential compounds targeting each group.

RESULTS

A 16-gene cell death index (CDI) was established. Patients were clustered into either the high risk or the low risk groups according to the CDI score, and those in the low risk group presented significantly longer OS and PFS than the high CDI group. ROC curves demonstrated outstanding performance of the gene signature in both the training and validation groups. Furthermore, immune cell analysis identified higher infiltration of neutrophils, macrophages, Treg, T helper cells, and aDCs, and lower infiltration of B cells in the high CDI group. Interestingly, this group also showed lower expression levels of immune checkpoint molecules PDCD1 and CD200, and higher expression levels of PDCD1LG2, CD86, CD48 and IDO1.

CONCLUSION

Our study proposes that the CDI signature can be utilized as a prognostic predictor and may guide patients' selection for preferential use of immunotherapy in GBM.

摘要

背景

胶质母细胞瘤(GBM)被认为是最恶性和最具破坏性的颅内肿瘤,目前尚无有效的治疗方法。自噬、细胞凋亡和细胞坏死是三种经典的细胞死亡途径,它们可以提供新的临床和免疫学见解,可能有助于设计个性化的治疗方法。在这项研究中,我们开发并验证了一种基于自噬、细胞凋亡和细胞坏死相关基因的有效特征,用于预测 GBM 患者的预后。

方法

我们从癌症基因组图谱(TCGA)数据库中探索了 518 名 GBM 患者中与自噬、细胞凋亡和细胞坏死相关的基因表达变化。进行单因素 Cox 分析、最小绝对值收缩和选择算子(LASSO)分析以及多因素 Cox 分析,以构建联合预后特征。进行 Kaplan-Meier 生存分析、受试者工作特征(ROC)曲线和基于总生存期(OS)和无进展生存期(PFS)的 Cox 回归分析,以评估基因特征的独立预后性能。使用中国胶质瘤基因组图谱(CGGA)数据集进行外部验证。最后,我们研究了不同预后组之间免疫微环境的差异,并预测了针对每个组的潜在化合物。

结果

建立了一个 16 基因细胞死亡指数(CDI)。根据 CDI 评分,患者被分为高风险或低风险组,低风险组的 OS 和 PFS 明显长于高 CDI 组。ROC 曲线表明基因特征在训练和验证组中均具有出色的性能。此外,免疫细胞分析发现,高 CDI 组中中性粒细胞、巨噬细胞、Treg、T 辅助细胞和 aDC 的浸润较高,B 细胞的浸润较低。有趣的是,该组还表现出免疫检查点分子 PDCD1 和 CD200 的表达水平较低,而 PDCD1LG2、CD86、CD48 和 IDO1 的表达水平较高。

结论

我们的研究表明,CDI 特征可作为预后预测指标,并可能指导患者选择更倾向于使用免疫疗法治疗 GBM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29a8/8892733/10402c62ddef/12885_2022_9328_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验