Suppr超能文献

贝叶斯和非贝叶斯可靠性估计在幂修正林德利分布的应力-强度模型中的应用。

Bayesian and Non-Bayesian Reliability Estimation of Stress-Strength Model for Power-Modified Lindley Distribution.

机构信息

Department of Statistics and Operations Research, King Saud University, Riyadh 11362, Saudi Arabia.

Department of Mathematics and Statistics-College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.

出版信息

Comput Intell Neurosci. 2022 Feb 22;2022:1154705. doi: 10.1155/2022/1154705. eCollection 2022.

Abstract

A two-parameter continuous distribution, namely, power-modified Lindley (PML), is proposed. Various structural properties of the new distribution, including moments, moment-generating function, conditional moments, mean deviations, mean residual lifetime, and mean past lifetime, are provided. The reliability of a system is discussed when the strength of the system and the stress imposed on it are independent. Maximum-likelihood estimation of the parameters and their estimated asymptotic standard errors are derived. Bayesian estimation methods of the parameters with independent gamma prior are discussed based on symmetric and asymmetric loss functions. We proposed using the MCMC technique with the Metropolis-Hastings algorithm to approximate the posteriors of the stress-strength parameters for Bayesian calculations. The confidence interval for likelihood and the Bayesian estimation method is obtained for the parameter of the model and stress-strength reliability. We prove empirically the importance and flexibility of the new distribution in modeling with real data applications.

摘要

提出了一种双参数连续分布,即幂修正林德利(PML)分布。给出了新分布的各种结构性质,包括矩、矩生成函数、条件矩、平均偏差、平均剩余寿命和平均过去寿命。讨论了当系统的强度和作用于系统的应力独立时系统的可靠性。推导出了参数的最大似然估计及其估计的渐近标准误差。基于对称和非对称损失函数,讨论了具有独立伽马先验的参数的贝叶斯估计方法。我们提出使用带有 Metropolis-Hastings 算法的 MCMC 技术来逼近贝叶斯计算中应力强度参数的后验分布。获得了模型和应力强度可靠性的似然和贝叶斯估计方法的置信区间。我们通过实际数据应用证明了新分布在建模中的重要性和灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf6c/8888086/d99778da0a14/CIN2022-1154705.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验