Suppr超能文献

具有统计推断及工程数据应用的逆幂XLindley分布

Inverse power XLindley distribution with statistical inference and applications to engineering data.

作者信息

Hassan Amal S, Alsadat Najwan, Chesneau Christophe, Elgarhy Mohammed, Kayid Mohamed, Nasiru Suleman, Gemeay Ahmed M

机构信息

Faculty of Graduate Studies for Statistical Research, Cairo University, 5 Dr. Ahmed Zewail Street, Giza, 12613, Egypt.

Department of Quantitative Analysis, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh, 11587, Saudi Arabia.

出版信息

Sci Rep. 2025 Feb 5;15(1):4385. doi: 10.1038/s41598-025-87023-6.

Abstract

In this article, a new two-parameter distribution is constructed using the inverse transformation technique on the power XLindley distribution. It is called the inverse power XLindley distribution. As an attractive property, it can generate symmetric and asymmetric probability density functions, ideal for modeling lifetime phenomena. In addition, it is suitable for various real data since the corresponding hazard rate function has an increasing, decreasing, reverse J-shape or J-shape. Essential characteristics and features of our study include quantiles, moments, inverse moments, probability-weighted moments, incomplete moments, and inequality measures. The inferences from the distribution are explored. In particular, the parameters are determined using twelve efficient estimation methods. These methods are maximum likelihood, Anderson-Darling, right-tailed Anderson-Darling, left-tailed Anderson-Darling, Cramér-von Mises, least squares, weighted least squares, maximum product of spacing, minimum spacing absolute distance, minimum spacing absolute-log distance, percentiles, and Kolmogorov. The performance of the resulting estimates is analyzed using Monte Carlo simulation. The numerical results and graphical presentation indicate that the maximum product of spacing estimation approach has the highest accuracy and precision. Using three real data sets and comparisons with other distributions, the effectiveness of the proposed distribution is demonstrated and visually presented.

摘要

在本文中,利用对幂XLindley分布的逆变换技术构建了一种新的双参数分布。它被称为逆幂XLindley分布。作为一个吸引人的特性,它可以生成对称和不对称的概率密度函数,非常适合对寿命现象进行建模。此外,由于相应的风险率函数具有递增、递减、反J形或J形,它适用于各种实际数据。我们研究的基本特征和特性包括分位数、矩、逆矩、概率加权矩、不完全矩和不等式度量。探索了该分布的推断方法。特别地,使用十二种有效的估计方法确定参数。这些方法是最大似然法、安德森- Darling法、右尾安德森- Darling法、左尾安德森- Darling法、克拉默-冯米塞斯法、最小二乘法、加权最小二乘法、最大间距乘积法、最小间距绝对距离法、最小间距绝对对数距离法、百分位数法和柯尔莫哥洛夫法。使用蒙特卡罗模拟分析所得估计值的性能。数值结果和图形展示表明,最大间距乘积估计方法具有最高的准确性和精度。通过使用三个实际数据集并与其他分布进行比较,证明并直观展示了所提出分布的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4a9/11799356/f5bbbfa81ba5/41598_2025_87023_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验