Muhammad Isyaku, Wang Xingang, Li Changyou, Yan Mingming, Chang Miaoxin
School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
College of Mechanical and Electrical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.
Entropy (Basel). 2020 Nov 17;22(11):1307. doi: 10.3390/e22111307.
This paper discussed the estimation of stress-strength reliability parameter R=P(Y<X) based on complete samples when the stress-strength are two independent Poisson half logistic random variables (PHLD). We have addressed the estimation of in the general case and when the scale parameter is common. The classical and Bayesian estimation (BE) techniques of are studied. The maximum likelihood estimator (MLE) and its asymptotic distributions are obtained; an approximate asymptotic confidence interval of is computed using the asymptotic distribution. The non-parametric percentile bootstrap and student's bootstrap confidence interval of are discussed. The Bayes estimators of are computed using a gamma prior and discussed under various loss functions such as the square error loss function (SEL), absolute error loss function (AEL), linear exponential error loss function (LINEX), generalized entropy error loss function (GEL) and maximum a posteriori (MAP). The Metropolis-Hastings algorithm is used to estimate the posterior distributions of the estimators of . The highest posterior density (HPD) credible interval is constructed based on the SEL. Monte Carlo simulations are used to numerically analyze the performance of the MLE and Bayes estimators, the results were quite satisfactory based on their mean square error (MSE) and confidence interval. Finally, we used two real data studies to demonstrate the performance of the proposed estimation techniques in practice and to illustrate how PHLD is a good candidate in reliability studies.
本文讨论了在应力强度为两个独立的泊松半逻辑随机变量(PHLD)时,基于完整样本对应力强度可靠性参数R = P(Y < X)的估计。我们已经解决了一般情况下以及尺度参数相同时R的估计问题。研究了R的经典估计和贝叶斯估计(BE)技术。得到了最大似然估计器(MLE)及其渐近分布;利用渐近分布计算了R的近似渐近置信区间。讨论了R的非参数百分位数自助法和学生自助法置信区间。使用伽马先验计算了R的贝叶斯估计器,并在各种损失函数下进行了讨论,如平方误差损失函数(SEL)、绝对误差损失函数(AEL)、线性指数误差损失函数(LINEX)、广义熵误差损失函数(GEL)和最大后验(MAP)。使用Metropolis-Hastings算法估计R估计器的后验分布。基于SEL构建了最高后验密度(HPD)可信区间。利用蒙特卡罗模拟对MLE和贝叶斯估计器的性能进行了数值分析,基于它们的均方误差(MSE)和置信区间,结果相当令人满意。最后,我们使用两个实际数据研究来证明所提出的估计技术在实际中的性能,并说明PHLD在可靠性研究中是一个很好的选择。